首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   386篇
  免费   29篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   13篇
  2015年   19篇
  2014年   22篇
  2013年   20篇
  2012年   45篇
  2011年   33篇
  2010年   30篇
  2009年   14篇
  2008年   27篇
  2007年   26篇
  2006年   27篇
  2005年   20篇
  2004年   30篇
  2003年   18篇
  2002年   18篇
  2001年   3篇
  1999年   4篇
  1997年   3篇
  1985年   1篇
排序方式: 共有415条查询结果,搜索用时 750 毫秒
61.
Demand for restoration of resilient, self‐sustaining, and biodiverse natural ecosystems as a conservation measure is increasing globally; however, restoration efforts frequently fail to meet standards appropriate for this objective. Achieving these standards requires management underpinned by input from diverse scientific disciplines including ecology, biotechnology, engineering, soil science, ecophysiology, and genetics. Despite increasing restoration research activity, a gap between the immediate needs of restoration practitioners and the outputs of restoration science often limits the effectiveness of restoration programs. Regrettably, studies often fail to identify the practical issues most critical for restoration success. We propose that part of this oversight may result from the absence of a considered statement of the necessary practical restoration science questions. Here we develop a comprehensive framework of the research required to bridge this gap and guide effective restoration. We structure questions in five themes: (1) setting targets and planning for success, (2) sourcing biological material, (3) optimizing establishment, (4) facilitating growth and survival, and (5) restoring resilience, sustainability, and landscape integration. This framework will assist restoration practitioners and scientists to identify knowledge gaps and develop strategic research focused on applied outcomes. The breadth of questions highlights the importance of cross‐discipline collaboration among restoration scientists, and while the program is broad, successful restoration projects have typically invested in many or most of these themes. Achieving restoration ecology's goal of averting biodiversity losses is a vast challenge: investment in appropriate science is urgently needed for ecological restoration to fulfill its potential and meet demand as a conservation tool.  相似文献   
62.
Restoring native habitats in heavily cleared and fragmented areas such as agricultural landscapes is important to maintain and increase remaining native floral and faunal communities. Identifying priority vegetation types for restoration – as well as the parcels of land where this restoration could take place at a landscape scale – may assist in strategically protecting these biodiversity assets. To prioritise the restoration of terrestrial habitats around an ecologically and culturally significant Ramsar‐listed wetland in South Australia, we used the spatial prioritisation tool Marxan. Originally designed for prioritising the protection of reserve areas, Marxan can also be used to identify parcels of land for restoration purposes. We tested how Marxan prioritised the restoration of four distinct vegetation types around the Coorong and Lower Lakes region of South Australia using the inverse of habitat remnancy as a cost and soil type and distance to ecologically significant bird species as a conservation feature. By prioritising restoration activities around certain landscape features, such as remnant areas, our results indicate that we would be able to strategically restore parcels of native habitat that would maximise biodiversity outcomes. This study highlights the need for robust input data, such as priority vegetation types and bird species associated with these habitats, to ensure informative modelling outputs. It also suggests that other measures, such as the cost of different land types, should be included in future restoration planning. Finally, we illustrate how prioritisation tools such as Marxan can be used by natural resource managers to restore areas within fragmented agricultural landscapes.  相似文献   
63.
In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.  相似文献   
64.
65.
Fibrillins and LTBPs [latent TGFβ (transforming growth factor β)-binding proteins] perform vital and complex roles in the extracellular matrix and are relevant to a wide range of human diseases. These proteins share a signature 'eight cysteine' or 'TB (TGFβ-binding protein-like)' domain that is found nowhere else in the human proteome, and which has been shown to mediate a variety of protein-protein interactions. These include covalent binding of the TGFβ propeptide, and RGD-directed interactions with a repertoire of integrins. TB domains are found interspersed with long arrays of EGF (epidermal growth factor)-like domains, which occur more widely in extracellular proteins, and also mediate binding to a large number of proteins and proteoglycans. In the present paper, newly available protein sequence information from a variety of sources is reviewed and related to published findings on the structure and function of fibrillins and LTBPs. These sequences give valuable insight into the evolution of TB domain proteins and suggest that the fibrillin domain organization emerged first, over 600 million years ago, prior to the divergence of Cnidaria and Bilateria, after which it has remained remarkably unchanged. Comparison of sequence features and domain organization in such a diverse group of organisms also provides important insights into how fibrillins and LTBPs might perform their roles in the extracellular matrix.  相似文献   
66.
Plasticity at central synapses depends critically on the timing of presynaptic and postsynaptic action potentials. Key initial steps in synaptic plasticity involve the back-propagation of action potentials into the dendritic tree and calcium influx that depends nonlinearly on the action potential and synaptic input. These initial steps are now better understood. In addition, recent studies of processes as diverse as gene expression and channel inactivation suggest that responses to calcium transients depend not only their amplitude, but on their time course and on the location of their origin.  相似文献   
67.
The effect of salt stress was analyzed in chloroplasts of Amaranthus cruentus var. Amaranteca, a plant NAD-malic enzyme (NAD-ME) type. Morphology of chloroplasts from bundle sheath (BSC) and mesophyll (MC) was observed by transmission electron microscopy (TEM). BSC and MC from control plants showed similar morphology, however under stress, changes in BSC were observed. The presence of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) was confirmed by immunohistochemical staining in both types of chloroplasts. Proteomic profiles of thylakoid protein complexes from BSC and MC, and their changes induced by salt stress were analyzed by blue-native polyacrylamide gel electrophoresis followed by SDS-PAGE (2-D BN/SDS-PAGE). Differentially accumulated protein spots were analyzed by LC–MS/MS. Although A. cruentus photosynthetic tissue showed the Kranz anatomy, the thylakoid proteins showed some differences at photosystem structure level. Our results suggest that A. cruentus var. Amaranteca could be better classified as a C3–C4 photosynthetic plant.  相似文献   
68.

Background

Bacterial respiratory tract infections, mainly caused by Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are among the leading causes of global mortality and morbidity. Increased resistance of these pathogens to existing antibiotics necessitates the search for novel targets to develop potent antimicrobials.

Result

Here, we report a proof of concept study for the reliable identification of potential drug targets in these human respiratory pathogens by combining high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics. Approximately 20% of all genes in these three species were essential for growth and viability, including 128 essential and conserved genes, part of 47 metabolic pathways. By comparing these essential genes to the human genome, and a database of genes from commensal human gut microbiota, we identified and excluded potential drug targets in respiratory tract pathogens that will have off-target effects in the host, or disrupt the natural host microbiota. We propose 249 potential drug targets, 67 of which are targets for 75 FDA-approved antimicrobials and 35 other researched small molecule inhibitors. Two out of four selected novel targets were experimentally validated, proofing the concept.

Conclusion

Here we have pioneered an attempt in systematically combining the power of high-density transposon mutagenesis, high-throughput sequencing, and integrative genomics to discover potential drug targets at genome-scale. By circumventing the time-consuming and expensive laboratory screens traditionally used to select potential drug targets, our approach provides an attractive alternative that could accelerate the much needed discovery of novel antimicrobials.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-958) contains supplementary material, which is available to authorized users.  相似文献   
69.
70.
There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an efficacious BU vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号