首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6352篇
  免费   456篇
  国内免费   1篇
  2024年   3篇
  2023年   24篇
  2022年   60篇
  2021年   148篇
  2020年   88篇
  2019年   108篇
  2018年   158篇
  2017年   106篇
  2016年   224篇
  2015年   366篇
  2014年   423篇
  2013年   492篇
  2012年   613篇
  2011年   609篇
  2010年   334篇
  2009年   286篇
  2008年   418篇
  2007年   410篇
  2006年   331篇
  2005年   341篇
  2004年   282篇
  2003年   256篇
  2002年   246篇
  2001年   40篇
  2000年   29篇
  1999年   51篇
  1998年   52篇
  1997年   51篇
  1996年   39篇
  1995年   26篇
  1994年   29篇
  1993年   20篇
  1992年   20篇
  1991年   17篇
  1990年   14篇
  1989年   11篇
  1988年   13篇
  1987年   10篇
  1986年   17篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   4篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有6809条查询结果,搜索用时 113 毫秒
91.
Due to the increasing development of anthelmintic resistance in nematodes worldwide, it is important to search for anthelmintic compounds with new modes of action and also to investigate the possibility to combine compounds with possible synergistic effects. There might also be the chance to take advantage of the fact that nematode populations which have developed resistance against one anthelmintic class might respond hypersusceptibly to another drug class. The aim of this study was to investigate responses of Caenorhabditis elegans populations with mutations in neuro-muscular ion channels to different anthelmintic classes. Furthermore, potential synergistic effects between two anthelmintic compounds from different classes, i.e. emodepside and tribendimidine, were studied. Although there was neither a synergistic nor an antagonistic effect between emodepside and tribendimidine, other types of interactions could be identified. The C. elegans GABAA-receptor (GABAA-R) unc-49 mutants, showing decreased emodepside susceptibility, were more susceptible to tribendimidine than wild-type C. elegans. In contrast, the reverse phenomenon – hypersusceptibility to emodepside in tribendimidine resistant acetylcholine-receptor (AChR) loss of function mutants – was not observed. Moreover, the slo-1 mutant strain (completely emodepside resistant) also showed hypersusceptibility to piperazine. Interestingly, neither the GABAA-R unc-49 mutants nor the AChR mutants showed decreased susceptibility against piperazine, although there were some studies that indicated an involvement of GABAA-R or AChR in the piperazine mode of action. In conclusion, the present study provides evidence suggesting that interactions between commercially available anthelmintic drugs with different modes of action might be a relatively common phenomenon but this has to be carefully worked out for each anthelmintic and each anthelmintic drug combination. Moreover, results obtained in C. elegans will have to be confirmed using parasitic nematodes in the future.  相似文献   
92.

Background

Chlorochromatium aggregatum’ is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. ‘Chlorochromatium aggregatum’ is a motile, barrel-shaped aggregate formed from a single cell of ‘Candidatus Symbiobacter mobilis”, a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium.

Results

We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, ‘Ca. S. mobilis’ appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of ‘Ca. S. mobilis’ on Chl. chlorochromatii is described.

Conclusions

Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, ‘Ca. S. mobilis’ can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.  相似文献   
93.
Background aimsAdvanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities.MethodsThe “Clean-Room Technology Assessment Technique” (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system.ResultsCTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost.ConclusionsCTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions.  相似文献   
94.
95.
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.  相似文献   
96.
Although lung disease is the major cause of mortality in cystic fibrosis (CF), gastrointestinal (GI) manifestations are the first hallmarks in 15–20% of affected newborns presenting with meconium ileus, and remain major causes of morbidity throughout life. We have previously shown that cGMP-dependent phosphodiesterase type 5 (PDE5) inhibitors rescue defective CF Transmembrane conductance Regulator (CFTR)-dependent chloride transport across the mouse CF nasal mucosa. Using F508del-CF mice, we examined the transrectal potential difference 1 hour after intraperitoneal injection of the PDE5 inhibitor vardenafil or saline to assess the amiloride-sensitive sodium transport and the chloride gradient and forskolin-dependent chloride transport across the GI tract. In the same conditions, we performed immunohistostaining studies in distal colon to investigate CFTR expression and localization. F508del-CF mice displayed increased sodium transport and reduced chloride transport compared to their wild-type littermates. Vardenafil, applied at a human therapeutic dose (0.14 mg/kg) used to treat erectile dysfunction, increased chloride transport in F508del-CF mice. No effect on sodium transport was detected. In crypt colonocytes of wild-type mice, the immunofluorescence CFTR signal was mostly detected in the apical cell compartment. In F508del-CF mice, a 25% reduced signal was observed, located mostly in the subapical region. Vardenafil increased the peak of intensity of the fluorescence CFTR signal in F508del-CF mice and displaced it towards the apical cell compartment. Our findings point out the intestinal mucosa as a valuable tissue to study CFTR transport function and localization and to evaluate efficacy of therapeutic strategies in CF. From our data we conclude that vardenafil mediates potentiation of the CFTR chloride channel and corrects mislocalization of the mutant protein. The study provides compelling support for targeting the cGMP signaling pathway in CF pharmacotherapy.  相似文献   
97.
98.
Melanoma is the most aggressive form of skin cancer with estimated 48,000 deaths per year worldwide. The polyphenol curcumin derived from the plant Curcuma longa is well known for its anti-inflammatory and anti-cancerogenic properties. Accordingly, dietary intake of this compound may be suitable for melanoma prevention. However, how this compound affects basic cellular mechanisms in developing melanoma still remains elusive. Therefore, the aim of this study was to investigate for the first time the impact of oral curcumin administration on the miRNA signature of engrafting melanoma. For this purpose, the effects of a 4% curcumin diet were tested on melanoma, which were established by injection of murine B78H1 cells in the flank of C57BL/6 mice. Curcumin diet or standard chow (control) was administered two weeks prior to injection of tumor cells until termination of the experiment. High throughput chip-based array analysis was deployed to detect alterations in the miRNA signature of the tumors. Curcumin treatment significantly reduced the growth of the flank tumors. Furthermore the miRNA expression signature in tumors was substantially altered by curcumin intake with mmu-miR-205-5p over 100 times higher expressed when compared to controls. The expression levels of identified key miRNAs in the tumor samples were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). A comparable expression pattern of these miRNAs was also detected in other curcumin-treated melanoma cell lines under in vitro conditions. Putative targets of curcumin-induced up-regulated miRNAs were enriched in ‘o-glycan biosynthesis’, ‘endoplasmatic reticulum protein processing’ and different cancer-related pathways. Western Blot analyses revealed that of these targets anti-apoptotic B-cell CLL/lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were significantly down-regulated in curcumin-treated tumors. These findings demonstrate a profound alteration of the miRNA expression signature in engrafting curcumin-treated melanoma with mmu-miR-205-5p being up-regulated most significantly.  相似文献   
99.
100.

Background

An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF)-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1), a TGF-beta activating protein.

Methods

Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA) and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays.

Results

Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells.

Conclusion

We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号