首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2448篇
  免费   170篇
  2618篇
  2024年   3篇
  2023年   21篇
  2022年   39篇
  2021年   85篇
  2020年   50篇
  2019年   57篇
  2018年   77篇
  2017年   48篇
  2016年   104篇
  2015年   157篇
  2014年   207篇
  2013年   211篇
  2012年   243篇
  2011年   245篇
  2010年   149篇
  2009年   122篇
  2008年   158篇
  2007年   145篇
  2006年   108篇
  2005年   106篇
  2004年   82篇
  2003年   75篇
  2002年   66篇
  2001年   9篇
  2000年   5篇
  1999年   12篇
  1998年   13篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有2618条查询结果,搜索用时 0 毫秒
71.
The aim of this study was to analyze the type of immune response (Th1, Th2) and protein composition of bronchoalveolar lavage (BAL) of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Flow cytometry analysis of intracellular cytokines revealed different patterns: in IPF and SSc Th2 profiles were predominant, whereas in sarcoidosis Th1 prevailed. The proteomic analysis of BAL fluid (BALF) showed that there were quantitative differences between the three diseases. These were more evident between sarcoidosis and IPF, confirming our previous observations, whereas SSc had an intermediate profile between the two, however with some peculiarities. Comparison of BALF protein maps, constructed with the same quantity of total proteins, enabled us to identify the main profiles of the three diseases: an increase in plasma protein prevalent in sarcoidosis and also present in SSc, though for fewer proteins with respect to IPF and a greater abundance of low molecular weight proteins, mainly locally produced, in IPF. These findings are in line with the different pathogenesis of these diseases: IPF is considered a prevalently fibrotic disorder limited to the lung, with intense local production of functionally different proteins, whereas sarcoidosis and SSc are systemic immunoinflammatory diseases.  相似文献   
72.
In the absence of efficient diagnostic and therapeutic tools, Alzheimer's disease (AD) is a major public health concern due to longer life expectancy in the Western countries. Although the precise cause of AD is still unknown, soluble β-amyloid (Aβ) oligomers are considered the proximate effectors of the synaptic injury and neuronal death occurring in the early stages of AD. Aβ oligomers may directly interact with the synaptic membrane, leading to impairment of synaptic functions and subsequent signalling pathways triggering neurodegeneration. Therefore, membrane structure and lipid status should be considered determinant factors in Aβ-oligomer-induced synaptic and cell injuries, and therefore AD progression. Numerous epidemiological studies have highlighted close relationships between AD incidence and dietary patterns. Among the nutritional factors involved, lipids significantly influence AD pathogenesis. It is likely that maintenance of adequate membrane lipid content could prevent the production of Aβ peptide as well as its deleterious effects upon its interaction with synaptic membrane, thereby protecting neurons from Aβ-induced neurodegeneration. As major constituents of neuronal lipids, n-3 polyunsaturated fatty acids are of particular interest in the prevention of AD valuable diet ingredients whose neuroprotective properties could be essential for designing preventive nutrition-based strategies. In this review, we discuss the functional relevance of neuronal membrane features with respect to susceptibility to Aβ oligomers and AD pathogenesis, as well as the prospective capacities of lipids to prevent or to delay the disease.  相似文献   
73.
It’s known that neurons in mammalian hibernators are more tolerant to hypoxia than those in non-hibernating species and as a consequence animals are capable of awakening from the arousal state without exhibiting cerebral damages. In addition, evidences have suggested that euthermic hamster neurons display protective adaptations against hypoxia, while those of rats are not capable, even though molecular mechanisms involved in similar neuroprotective strategies have not been yet fully studied. In the present work, overstimulation of glutamatergic receptors NMDA recognized as one of the major death-promoting element in hypoxia, accounted for altered network complexity consistent with a moderate reduction of hippocampal neuronal survival (p < 0.05) in hamsters. These alterations appeared to be featured concomitantly with altered glutamatergic signaling as indicated by significant down-regulation (p < 0.01) of NMDAergic (NR2A) and AMPAergic (GluR1, R2) receptor subtypes together with the metabotropic mGluR5 subtype. Diminished mRNA levels were also reported for NMDA receptor binding factors and namely PSD95 plus DREAM, which exert positive and negative regulatory properties, respectively, on receptor trafficking events. Conversely, involvement of glutamatergic signaling systems on neuronal excitotoxicity was strengthened by the co-activation of GABAAR-mediated effects as indicated by toxic morphological effects being notably reduced along with up-regulated GluR1, GluR2, mGluR5, DREAM, and Homer1c scaffold proteins when muscimol was added. Overall, these results point to a neuroprotective role of the GABAergic system against excitotoxicity episodes via DREAM-dependent inhibition of NMDA receptor and activation of AMPA receptor plus mGluR5, respectively, thus proposing them as novel therapeutic targets against cerebral ischemic damages in humans.  相似文献   
74.
In response to stress or injury the heart undergoes an adverse remodeling process associated with cardiomyocyte hypertrophy and fibrosis. Transformation of cardiac fibroblasts to myofibroblasts is a crucial event initiating the fibrotic process. Cardiac myofibroblasts invade the myocardium and secrete excess amounts of extracellular matrix proteins, which cause myocardial stiffening, cardiac dysfunctions and progression to heart failure. While several studies indicate that the small GTPase RhoA can promote profibrotic responses, the exchange factors that modulate its activity in cardiac fibroblasts are yet to be identified. In the present study, we show that AKAP-Lbc, an A-kinase anchoring protein (AKAP) with an intrinsic Rho-specific guanine nucleotide exchange factor (GEF) activity, is critical for activating RhoA and transducing profibrotic signals downstream of type I angiotensin II receptors (AT1Rs) in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin (sh) RNAs strongly reduces the ability of angiotensin II to promote RhoA activation, differentiation of cardiac fibroblasts to myofibroblasts, collagen deposition as well as myofibroblast migration. Interestingly, AT1Rs promote AKAP-Lbc activation via a pathway that requires the α subunit of the heterotrimeric G protein G12. These findings identify AKAP-Lbc as a key Rho-guanine nucleotide exchange factor modulating profibrotic responses in cardiac fibroblasts.  相似文献   
75.
Reference intervals are commonly considered to allow for between-laboratory bias. The RCPAQAP Liquid Serum Chemistry Program has collected data on laboratory measurements as well as reference intervals. This allows assessment of the between-laboratory variation in results, reference intervals and the information transmitted by the combination of these factors. For the majority of common chemistry analytes, the between-laboratory variation in reference intervals is greater than the variation in results. Additionally the reference interval variation is generally not related to bias between the results. Use of common reference intervals, either as an average of the current intervals in use, or the intervals proposed by the AACB Harmonisation Group, improved the variation seen in the information produced by different laboratories.  相似文献   
76.
To search for submolecular foldon units, the spontaneous reversible unfolding and refolding of staphylococcal nuclease under native conditions was studied by a kinetic native-state hydrogen exchange (HX) method. As for other proteins, it appears that staphylococcal nuclease is designed as an assembly of well-integrated foldon units that may define steps in its folding pathway and may regulate some other functional properties. The HX results identify 34 amide hydrogens that exchange with solvent hydrogens under native conditions by way of large transient unfolding reactions. The HX data for each hydrogen measure the equilibrium stability (ΔGHX) and the kinetic unfolding and refolding rates (kop and kcl) of the unfolding reaction that exposes it to exchange. These parameters separate the 34 identified residues into three distinct HX groupings. Two correspond to clearly defined structural units in the native protein, termed the blue and red foldons. The remaining HX grouping contains residues, not well separated by their HX parameters alone, that represent two other distinct structural units in the native protein, termed the green and yellow foldons. Among these four sets, a last unfolding foldon (blue) unfolds with a rate constant of 6 × 10− 6 s− 1 and free energy equal to the protein's global stability (10.0 kcal/mol). It represents part of the β-barrel, including mutually H-bonding residues in the β4 and β5 strands, a part of the β3 strand that H-bonds to β5, and residues at the N-terminus of the α2 helix that is capped by β5. A second foldon (green), which unfolds and refolds more rapidly and at slightly lower free energy, includes residues that define the rest of the native α2 helix and its C-terminal cap. A third foldon (yellow) defines the mutually H-bonded β1-β2-β3 meander, completing the native β-barrel, plus an adjacent part of the α1 helix. A final foldon (red) includes residues on remaining segments that are distant in sequence but nearly adjacent in the native protein. Although the structure of the partially unfolded forms closely mimics the native organization, four residues indicate the presence of some nonnative misfolding interactions. Because the unfolding parameters of many other residues are not determined, it seems likely that the concerted foldon units are more extensive than is shown by the 34 residues actually observed.  相似文献   
77.
78.
79.
80.
Abstract

During research directed towards the employment of the biological resources of the North Adriatic lagoons, from January 1991 to December 1992, in both tidal phases, a survey was carried out on the phytoplankton and the chemico-physical parameters of the Scardovari lagoon. Data analyses allowed two different areas to be distinguished: one inner, which was generally characterized by high phytoplanktonic densities (St. 3–4), the other outer, which was more influced by marine load (St. 1–2). Photosynthetic picoplankton was dominant in terms of cell number in most samples. Phytoplanktonic fraction >2 μm was represented mainly by diatoms, which showed the higher species number. During the sample observation, some dinoflagellates, considered toxic or potentially toxic, were found. Their presence was important because of their effect on the bivalve mollusc cultures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号