全文获取类型
收费全文 | 2450篇 |
免费 | 168篇 |
专业分类
2618篇 |
出版年
2024年 | 3篇 |
2023年 | 21篇 |
2022年 | 39篇 |
2021年 | 85篇 |
2020年 | 50篇 |
2019年 | 57篇 |
2018年 | 77篇 |
2017年 | 48篇 |
2016年 | 104篇 |
2015年 | 157篇 |
2014年 | 207篇 |
2013年 | 211篇 |
2012年 | 243篇 |
2011年 | 245篇 |
2010年 | 149篇 |
2009年 | 122篇 |
2008年 | 158篇 |
2007年 | 145篇 |
2006年 | 108篇 |
2005年 | 106篇 |
2004年 | 82篇 |
2003年 | 75篇 |
2002年 | 66篇 |
2001年 | 9篇 |
2000年 | 5篇 |
1999年 | 12篇 |
1998年 | 13篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
排序方式: 共有2618条查询结果,搜索用时 15 毫秒
81.
Ballabio E Regan R Garimberti E Harbott J Bradtke J Teigler-Schlegel A Biondi A Cazzaniga G Giudici G Wainscoat JS Boultwood J Bridger JM Knight SJ Tosi S 《PloS one》2011,6(6):e20607
Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status. 相似文献
82.
83.
Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells 总被引:7,自引:0,他引:7
Catalano A Rodilossi S Rippo MR Caprari P Procopio A 《The Journal of biological chemistry》2004,279(45):46706-46714
Malignant mesothelioma (MM) is strongly resistant to conventional chemotherapy by unclear mechanisms. We and others have previously reported that cytokine- and growth factor-mediated signal transduction is involved in the growth and progression of MM. Here, we identified a pathway that involves stem cell factor (SCF)/c-Kit/Slug in mediating multidrug resistance of MM cells. When we compared gene expression profiles between five MM cells and their multidrug-resistant (MM DX) sublines, we found that MM DX cells expressed both SCF and c-Kit and had higher mRNA levels of Slug. Knockdown of c-Kit or Slug expression with their respective small interfering RNA sensitized MM DX cells to the induction of apoptosis by different chemotherapeutic agents, including doxorubicin, paclitaxel, and vincristine. Transfection of c-Kit in parental MM cells in the presence of SCF up-regulated Slug and increased resistance to the chemotherapeutic agents. Moreover, MM cells expressing Slug showed a similar increased resistance to the chemotherapeutic agents. These results indicate that induction of Slug by autocrine production of SCF and c-Kit activation plays a key role in conferring a broad spectrum chemoresistance on MM cells and reveal a novel signal transduction pathway for pharmacological or genetic intervention of MM patients. 相似文献
84.
Marques SA Loureiro AP Gomes OF Garcia CC Di Mascio P Medeiros MH 《FEBS letters》2004,560(1-3):125-130
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products. 相似文献
85.
Asmita Banerjee Sylvia Nürnberger Simone Hennerbichler Sabrina Riedl Christina M. A. P. Schuh Ara Hacobian Andreas Teuschl Johann Eibl Heinz Redl Susanne Wolbank 《Cell and tissue banking》2014,15(2):227-239
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration. 相似文献
86.
Sabrina Locatelli Kurt A. McKean Paul R. Sesink Clee Mary Katherine Gonder 《International journal of primatology》2014,35(2):349-375
Examining how pathogens cross species boundaries, spread within species, and persist within their hosts is an essential part of understanding the factors that underpin the evolution of virulence and host resistance. Here, we review current knowledge about the genetic diversity, molecular epidemiology, prevalence, and pathogenicity of simian immunodeficiency viruses (SIVs). SIVs have crossed species boundaries from simian hosts to humans on at least 12 separate occasions, one of which led to the global HIV–AIDS crisis. Though SIVs infect a wide range of primates, scientists have only recently begun to describe the natural history of SIV infection in their natural hosts. Several new studies reveal how both viral and host factors are responsible for the transmission to, and adaptation in, new hosts. These studies also suggest that the spread of the virus may be affected by host-specific traits, including social structure, mating system and demographic history. These studies challenge the traditional view that SIV is relatively benign in its natural host, and instead suggest that a highly dynamic relationship exists between SIV and its simian hosts. 相似文献
87.
Anna Woloszyk Sabrina Holsten Dircksen Nagihan Bostanci Ralph Müller Sandra Hofmann Thimios A. Mitsiadis 《PloS one》2014,9(10)
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required. 相似文献
88.
89.
Opposing effects of hypoxia on catecholaminergic locus coeruleus and hypocretin/orexin neurons in chick embryos 下载免费PDF全文
Jeremy P. Landry Connor Hawkins Sabrina Wiebe Evan Balaban Maria Pompeiano 《Developmental neurobiology》2014,74(10):1030-1037
Terrestrial vertebrate embryos face a risk of low oxygen availability (hypoxia) that is especially great during their transition to air‐breathing. To better understand how fetal brains respond to hypoxia, we examined the effects of low oxygen availability on brain activity in late‐stage chick embryos (day 18 out of a 21‐day incubation period). Using cFos protein expression as a marker for neuronal activity, we focused on two specific, immunohistochemically identified cell groups known to play an important role in regulating adult brain states (sleep and waking): the noradrenergic neurons of the Locus Coeruleus (NA‐LC), and the Hypocretin/Orexin (H/O) neurons of the hypothalamus. cFos expression was also examined in the Pallium (the avian analog of the cerebral cortex). In adult mammalian brains, cFos expression changes in a coordinated way in these areas. In chick embryos, oxygen deprivation simultaneously activated NA‐LC while deactivating H/O‐producing neurons; it also increased cFos expression in the Pallium. Activity in one pallial primary sensory area was significantly related to NA‐LC activity. These data reveal that at least some of the same neural systems involved in brain‐state control in adults may play a central role in orchestrating prenatal hypoxic responses, and that these circuits may show different patterns of coordination than seen in adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1030–1037, 2014 相似文献
90.
Tasnim Ahmed Sudip Biswas Sabrina M. Elias M. Sazzadur Rahman Narendra Tuteja Zeba I. Seraj 《In vitro cellular & developmental biology. Plant》2018,54(2):154-165
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation. 相似文献