首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2812篇
  免费   211篇
  3023篇
  2023年   22篇
  2022年   40篇
  2021年   85篇
  2020年   52篇
  2019年   59篇
  2018年   82篇
  2017年   54篇
  2016年   110篇
  2015年   164篇
  2014年   216篇
  2013年   225篇
  2012年   268篇
  2011年   252篇
  2010年   159篇
  2009年   139篇
  2008年   174篇
  2007年   157篇
  2006年   120篇
  2005年   124篇
  2004年   94篇
  2003年   89篇
  2002年   75篇
  2001年   22篇
  2000年   25篇
  1999年   20篇
  1998年   17篇
  1997年   11篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   8篇
  1991年   12篇
  1990年   12篇
  1989年   10篇
  1988年   6篇
  1987年   15篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1975年   8篇
  1974年   5篇
  1973年   8篇
  1972年   3篇
排序方式: 共有3023条查询结果,搜索用时 10 毫秒
31.
32.
33.

Background  

One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses.  相似文献   
34.
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.  相似文献   
35.
The human opportunistic pathogen Serratia marcescens is a bacterium with a broad host range, and represents a growing problem for public health. Serratia marcescens kills Caenorhabditis elegans after colonizing the nematode's intestine. We used C.elegans to screen a bank of transposon-induced S.marcescens mutants and isolated 23 clones with an attenuated virulence. Nine of the selected bacterial clones also showed a reduced virulence in an insect model of infection. Of these, three exhibited a reduced cytotoxicity in vitro, and among them one was also markedly attenuated in its virulence in a murine lung infection model. For 21 of the 23 mutants, the transposon insertion site was identified. This revealed that among the genes necessary for full in vivo virulence are those that function in lipopolysaccharide (LPS) biosynthesis, iron uptake and hemolysin production. Using this system we also identified novel conserved virulence factors required for Pseudomonas aeruginosa pathogenicity. This study extends the utility of C.elegans as an in vivo model for the study of bacterial virulence and advances the molecular understanding of S.marcescens pathogenicity.  相似文献   
36.
Phagocyte NADPH oxidase generates O2. for defense mechanisms and cellular signaling. Myeloid-related proteins MRP8 and MRP14 of the S100 family are EF-hand calcium-binding proteins. MRP8 and MRP14 were co-isolated from neutrophils on an anti-p47phox matrix with oxidase cytosolic factors and identified by mass spectrometry. MRP8 and MRP14 are absent from Epstein-Barr virus-immortalized B lymphocytes, and, coincidentally, these cells display weak oxidase activity compared with neutrophils. MRP8/MRP14 that was purified from neutrophils enhanced oxidase turnover of B cells in vitro, suggesting that MRP8/MRP14 is involved in the activation process. This was confirmed ex vivo by co-transfection of Epstein-Barr virus-transformed B lymphocytes with genes encoding MRP8 and MRP14. In a semi-recombinant cell-free assay, recombinant MRP8/MRP14 increased the affinity of p67phox for cytochrome b558 synergistically with p47phox. Moreover, MRP8/MRP14 initiated oxidase activation on its own, through a calcium-dependent specific interaction with cytochrome b558 as shown by atomic force microscopy and a structure-function relationship investigation. The data suggest that the change of conformation in cytochrome b558, which initiates the electron transfer, can be mediated by effectors other than oxidase cytosolic factors p67phox and p47phox. Moreover, MRP8/MRP14 dimer behaves as a positive mediator of phagocyte NADPH oxidase regulation.  相似文献   
37.
38.
The aim of this study was to evaluate whether L-Arginine (L-Arg) supplementation modifies nitric oxide (NO) system and consequently aquaporin-2 (AQP2) expression in the renal outer medulla of streptozotocin-diabetic rats at an early time point after induction of diabetes. Male Wistar rats were divided in four groups: Control, Diabetic, Diabetic treated with L-Arginine and Control treated with L-Arginine. Nitric oxide synthase (NOS) activity was estimated by [14C] L-citrulline production in homogenates of the renal outer medulla and by NADPH-diaphorase staining in renal outer medullary tubules. Western blot was used to detect the expression of AQP2 and NOS types I and III; real time PCR was used to quantify AQP2 mRNA. The expression of both NOS isoforms, NOS I and NOS III, was decreased in the renal outer medulla of diabetic rats and L-Arg failed to prevent these decreases. However, L-Arg improved NO production, NADPH-diaphorase activity in collecting ducts and other tubular structures, and NOS activity in renal homogenates from diabetic rats. AQP2 protein and mRNA were decreased in the renal outer medulla of diabetic rats and L-Arg administration prevented these decreases. These results suggest that the decreased NOS activity in collecting ducts of the renal outer medulla may cause, at least in part, the decreased expression of AQP2 in this model of diabetes and constitute additional evidence supporting a role for NO in contributing to renal water reabsorption through the modulation of AQP2 expression in this pathological condition. However, we cannot discard that another pathway different from NOS also exists that links L-Arg to AQP2 expression.  相似文献   
39.
Paramecium has a 280-kDa guanylyl cyclase. The N terminus resembles a P-type ATPase, and the C terminus is a guanylyl cyclase with the membrane topology of canonical mammalian adenylyl cyclases, yet with the cytosolic loops, C1 and C2, inverted compared with the mammalian order. We expressed in Escherichia coli the cytoplasmic domains of the protozoan guanylyl cyclase, independently and linked by a peptide, as soluble proteins. The His(6)-tagged proteins were enriched by affinity chromatography and analyzed by immunoblotting. Guanylyl cyclase activity was reconstituted upon mixing of the recombinant C1a- and C2-positioned domains and in a linked C1a-C2 construct. Adenylyl cyclase activity was minimal. The nucleotide substrate specificity was switched from GTP to ATP upon mutation of the substrate defining amino acids Glu(1681) and Ser(1748) in the C1-positioned domain to the adenylyl cyclase specific amino acids Lys and Asp. Using the C2 domains of mammalian adenylyl cyclases type II or IX and the C2-positioned domain from the Paramecium guanylyl cyclase we reconstituted a soluble, all C2 adenylyl cyclase. All enzymes containing protozoan domains were not affected by Galpha(s)/GTP or forskolin, and P site inhibitors were only slightly effective.  相似文献   
40.
Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号