首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4641篇
  免费   365篇
  国内免费   3篇
  5009篇
  2023年   12篇
  2022年   42篇
  2021年   78篇
  2020年   48篇
  2019年   60篇
  2018年   62篇
  2017年   73篇
  2016年   132篇
  2015年   212篇
  2014年   217篇
  2013年   299篇
  2012年   386篇
  2011年   378篇
  2010年   256篇
  2009年   227篇
  2008年   294篇
  2007年   325篇
  2006年   297篇
  2005年   249篇
  2004年   266篇
  2003年   235篇
  2002年   215篇
  2001年   44篇
  2000年   37篇
  1999年   56篇
  1998年   69篇
  1997年   45篇
  1996年   40篇
  1995年   47篇
  1994年   39篇
  1993年   35篇
  1992年   28篇
  1991年   27篇
  1990年   27篇
  1989年   19篇
  1988年   15篇
  1987年   13篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1974年   3篇
  1972年   5篇
  1971年   3篇
  1966年   4篇
排序方式: 共有5009条查询结果,搜索用时 15 毫秒
51.
Diurnal variations in ventilatory and cardiorespiratory responses to submaximal treadmill exercise were analysed in 11 eumenorrhoeic women and in 10 women using monophasic oral contraceptives. Subjects performed submaximal treadmill exercise at three intensities averaging 7, 8, and 9 km x h(-1), each for 4 min at 0800, 1300 and 1700 hours, assigned randomly on 3 separate days. Rectal temperature was measured before (T(rec(b))) and after (T(rec(a))) exercise. Cardiac frequency (f(c)), ventilation (V(E)), oxygen uptake (VO(2)), carbon dioxide output (VCO(2)), and respiratory exchange ratio (R) were assessed in the last minute of each stage of the exercise. Both T(rec(b)) and T(rec(a)) increased from 0800 to 1700 hours (P < 0.001). For a given submaximal work rate, VO(2) and VCO(2) were higher in the afternoon compared to the morning. Similarly, R was increased at 1700 hours compared to 0800 hours during the recovery period following exercise (P < 0.05). However, V(E) did not vary significantly during the day at any of the running intensities. No significant interactions (group x time of day) were observed in any of the studied parameters. In contrast to ventilation, the VO(2) and VCO(2) of the females during submaximal exercise were both affected by the time of day, without any differences between eumenorrhoeic women and users of oral contraceptives.  相似文献   
52.
Grazing-induced changes in cell wall silicification in a marine diatom   总被引:1,自引:0,他引:1  
In aquatic environments, diatoms (Bacillariophyceae) constitute a central group of microalgae which contribute to about 40% of the oceanic primary production. Diatoms have an absolute requirement for silicon to build-up their silicified cell wall in the form of two shells (the frustule). To date, changes in diatom cell wall silicification have been only studied in response to changes in the growth environment, with consistent increase in diatom silica content when specific growth rates decrease under nutrient or light limitations. Here, we report the first evidence for grazing-induced changes in cell wall silicification in a marine diatom. Cells grown in preconditioned media that had contained both diatoms and herbivores are significantly more silicified than diatoms grown in media that have contained diatoms alone or starved herbivores. These observations suggest that grazing-induced increase in cell wall silicification can be viewed as an adaptive reaction in habitats with variable grazing pressure, and demonstrate that silicification in diatoms is not only a constitutive mechanical protection for the cell, but also a phenotypically plastic trait modulated by grazing. In turn, our results corroborate the idea that plant-herbivore interactions, beyond grazing sensu stricto, contribute to drive ecosystem structure and biogeochemical cycles in the ocean.  相似文献   
53.
54.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.  相似文献   
55.
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor.  相似文献   
56.
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels that mediate fast inhibition in the central nervous system. Depending on their subunit composition, these receptors exhibit distinct pharmacological properties and differ in their ability to interact with proteins involved in receptor anchoring at synaptic or extra-synaptic sites. Whereas GABAA receptors containing α1, α2, or α3 subunits are mainly located synaptically where they interact with the submembranous scaffolding protein gephyrin, receptors containing α5 subunits are predominantly found extra-synaptically and seem to interact with radixin for anchorage. Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that is involved in hippocampal synaptic plasticity. Our results reveal that neuroplastin and GABAA receptors can be co-purified from rat brain and exhibit a direct physical interaction as demonstrated by co-precipitation and Förster resonance energy transfer (FRET) analysis in a heterologous expression system. The brain-specific isoform neuroplastin-65 co-localizes with GABAA receptors as shown in brain sections as well as in neuronal cultures, and such complexes can either contain gephyrin or be devoid of gephyrin. Neuroplastin-65 specifically co-localizes with α1 or α2 but not with α3 subunits at GABAergic synapses. In addition, neuroplastin-65 also co-localizes with GABAA receptor α5 subunits at extra-synaptic sites. Down-regulation of neuroplastin-65 by shRNA causes a loss of GABAA receptor α2 subunits at GABAergic synapses. These results suggest that neuroplastin-65 can co-localize with a subset of GABAA receptor subtypes and might contribute to anchoring and/or confining GABAA receptors to particular synaptic or extra-synaptic sites, thus affecting receptor mobility and synaptic strength.  相似文献   
57.
The lipid bis(guanidinium)-tren-cholesterol (BGTC) is a cationic cholesterol derivative bearing guanidinium polar headgroups used for gene transfection either alone or formulated as liposomes with the zwitterionic lipid 1,2-di-[cis-9-octadecenoyl]-sn-glycero-3-phosphoethanolamine (DOPE). Previous investigations have shown its ability to strongly interact with DNA and form asymmetric lipid bilayers at the air/water interface when mixed with DOPE. Here, with a view to further investigate its physicochemical behavior, we studied the interactions of mixtures of BGTC with another zwitterionic lipid, 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine, (DMPC), with DNA at the air/water interface by using the Langmuir monolayer technique coupled with Brewster Angle Microscopy (BAM) and Polarization Modulation Infra Red Reflexion Absorption (PMIRRAS) spectroscopy and we investigate DNA–BGTC/DMPC interactions. We demonstrate that when DNA is injected into the subphase in excess compared to the positive charges of BGTC, it adsorbs to BGTC/DMPC monolayers at 20 mN/m whatever the lipid monolayer composition (1/5, 2/3 or 3/2 BGTC/DMPC molar ratio) and forms an incomplete monolayer of either isotropic or anisotropic double strands depending on the BGTC content in the monolayer. Compression beyond the collapse of some mixed DNA–BGTC/DMPC (2/3 and 3/2 molar ratio) systems leads to the formation of DNA monolayers underneath asymmetric lipid bilayers characterized by a bottom layer of BGTC in contact with DNA and a top layer mainly constituted of DMPC.  相似文献   
58.
59.
Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the alpha- and beta-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium.  相似文献   
60.

Background

Stress management interventions may prove useful in preventing the detrimental effects of stress on health. This study assessed the effects of a stress management intervention on the psychophysiological response to stress in patients with rheumatoid arthritis (RA).

Methods

Seventy-four patients with RA, who were randomly assigned to either a control group or a group that received short-term stress management training, performed a standardized psychosocial stress task (Trier Social Stress Test; TSST) 1 week after the stress management training and at a 9-week follow-up. Psychological and physical functioning, and the acute psychophysiological response to the stress test were assessed.

Results

Patients in the intervention group showed significantly lower psychological distress levels of anxiety after the training than did the controls. While there were no between-group differences in stress-induced tension levels, and autonomic (α-amylase) or endocrine (cortisol) responses to the stress test 1 week after the intervention, levels of stress-induced tension and cortisol were significantly lower in the intervention group at the 9-week follow-up. Overall, the response to the intervention was particularly evident in a subgroup of patients with a psychological risk profile.

Conclusion

A relatively short stress management intervention can improve psychological functioning and influences the psychophysiological response to stress in patients with RA, particularly those psychologically at risk. These findings might help understand how stress can affect health and the role of individual differences in stress responsiveness.

Trial Registration

TrialRegister.nl NTR1193  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号