首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4622篇
  免费   363篇
  国内免费   3篇
  2023年   11篇
  2022年   36篇
  2021年   78篇
  2020年   48篇
  2019年   60篇
  2018年   62篇
  2017年   72篇
  2016年   131篇
  2015年   212篇
  2014年   217篇
  2013年   299篇
  2012年   384篇
  2011年   378篇
  2010年   256篇
  2009年   225篇
  2008年   294篇
  2007年   322篇
  2006年   296篇
  2005年   248篇
  2004年   265篇
  2003年   235篇
  2002年   215篇
  2001年   44篇
  2000年   37篇
  1999年   56篇
  1998年   69篇
  1997年   45篇
  1996年   40篇
  1995年   47篇
  1994年   39篇
  1993年   35篇
  1992年   28篇
  1991年   27篇
  1990年   27篇
  1989年   19篇
  1988年   14篇
  1987年   13篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1974年   3篇
  1972年   5篇
  1971年   3篇
  1966年   4篇
排序方式: 共有4988条查询结果,搜索用时 62 毫秒
81.
Acoustic phenotypic variation is of major importance for speciation and the evolution of species diversity. Whereas selective and stochastic forces shaping the acoustic divergence of signaling systems are well studied in insects, frogs, and birds, knowledge on the processes driving acoustic phenotypic evolution in mammals is limited. We quantified the acoustic variation of a call type exchanged during agonistic encounters across eight distinct species of the smallest‐bodied nocturnal primate radiation, the Malagasy mouse lemurs. The species live in two different habitats (dry forest vs. humid forest), differ in geographic distance to each other, and belong to four distinct phylogenetic clades within the genus. Genetically defined species were discriminated reliably on the phenotypic level based on their acoustic distinctiveness in a discriminant function analysis. Acoustic variation was explained by genetic distance, whereas differences in morphology, forest type, or geographic distance had no effect. The strong impact of genetics was supported by a correlation between acoustic and genetic distance and the high agreement in branching pattern between the acoustic and molecular phylogenetic trees. In sum, stochastic factors such as genetic drift best explained acoustic diversification in a social communication call of mouse lemurs.  相似文献   
82.
Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin‐type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N‐globular domain, a P‐arm domain, and a highly charged C‐terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause‐related expression analysis in the whole body revealed an upregulation of both genes by post‐diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause‐related expression pattern in the entire body for both genes. Fat body‐specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post‐diapause. This study suggests that calcium‐binding chaperones play similar and possibly gender‐specific roles during diapause.  相似文献   
83.
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra‐Conserved Elements (UCEs) with supermatrix (RAx ML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum‐likelihood approaches, an artifactual mid‐point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.  相似文献   
84.
The parental food compensation hypothesis suggests that parents may compensate for the negative effects of parasites on chicks by increased food provisioning. However, this ability differs widely among host species and may also depend on ecological factors such as adverse weather conditions and habitat quality. Although weed management can improve habitat quality, management measures can bring about a temporary decrease in food availability and thus may reduce parents’ ability to provide their nestlings with enough energy. In our study we investigated the interaction of parasitism and weed management, and the influence of climate on feeding rates in a Darwin’s tree finch species, which is negatively impacted by two invasive species. The larvae of the invasive parasitic fly Philornis downsi ingest the blood and body tissues of tree finch nestlings, and the invasive Blackberry Rubus niveus affects one of the main habitats of Darwin’s tree finches. We compared parental food provisioning of the Small Tree Finch Camarhynchus parvulus in parasitized and parasite‐free nests in three different areas, which differed in invasive weed management (no management, short‐term and long‐term management). In a parasite reduction experiment, we investigated whether the Small Tree Finch increases food provisioning rates to nestlings when parasitized and whether this ability depends on weed management conditions and precipitation. Our results provide no evidence that Small Tree Finches can compensate with additional food provisioning when parasitized with P. downsi. However, we found an increase in male effort in the short‐term management area, which might indicate that males compensate for lower food quality with increased provisioning effort. Furthermore, parental food provisioning was lower during rainfall, which provides an explanation for the negative influence of rain on breeding success found in earlier studies. Like other Darwin’s finches, the Small Tree Finch seems to lack the ability to compensate for the negative effects of P. downsi parasitism, which is one explanation for why this invasive parasite has such a devastating effect on this host species.  相似文献   
85.
The X-linked gene Rnf12 encodes the ubiquitin ligase really interesting new gene (RING) finger LIM domain–interacting protein (RLIM)/RING finger protein 12 (Rnf12), which serves as a major sex-specific epigenetic regulator of female mouse nurturing tissues. Early during embryogenesis, RLIM/Rnf12 expressed from the maternal allele is crucial for the development of extraembryonic trophoblast cells. In contrast, in mammary glands of pregnant and lactating adult females RLIM/Rnf12 expressed from the paternal allele functions as a critical survival factor for milk-producing alveolar cells. Although RLIM/Rnf12 is detected mostly in the nucleus, little is known about how and in which cellular compartment(s) RLIM/Rnf12 mediates its biological functions. Here we demonstrate that RLIM/Rnf12 protein shuttles between nucleus and cytoplasm and this is regulated by phosphorylation of serine S214 located within its nuclear localization sequence. We show that shuttling is important for RLIM to exert its biological functions, as alveolar cell survival activity is inhibited in cells expressing shuttling-deficient nuclear or cytoplasmic RLIM/Rnf12. Thus regulated nucleocytoplasmic shuttling of RLIM/Rnf12 coordinates cellular compartments during mammary alveolar cell survival.  相似文献   
86.
Integrated management of mosquitoes is becoming increasingly important, particularly in relation to avoiding recolonization of ponds after larvicide treatment. We conducted for the first time field experiments that involved exposing natural populations of the mosquito species Culex pipiens to: a) application of the biological insecticide Bacillus thuringiensis israelensis (Bti), b) the introduction of natural competitors (a crustacean community composed mainly of Daphnia spp.), or c) a combined treatment that involved both introduction of a crustacean community and the application of Bti. The treatment that involved only the introduction of crustaceans had no significant effect on mosquito larval populations, while treatment with Bti alone caused only a significant reduction in the abundance of mosquito larvae in the short‐term (within 3–10 days after treatment). In contrast, the combined treatment rapidly reduced the abundance of mosquito larvae, which remained low throughout the entire observation period of 28 days. Growth of the introduced crustacean communities was favored by the immediate reduction in the abundance of mosquito larvae following Bti administration, thus preventing recolonization of ponds by mosquito larvae at the late period (days 14–28 after treatment). Both competition and the temporal order of establishment of different species are hence important mechanisms for efficient and sustainable mosquito control.  相似文献   
87.
Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non‐disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute‐long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze‐substitution, sample rehydration and cryosection‐immunolabelling or with freeze‐fracture replica‐immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.  相似文献   
88.
Nematodes are very common in the deep sea and are an important component of deep-sea hydrothermal vent communities. In early 2006, the eruption of the underwater volcano at 9°50’N East Pacific Rise wiped out almost the entire faunal communities of the area. This provided us with the opportunity to study nematode primary succession at vents as well as on adjacent seafloor basalt. Nematode abundance and richness were extremely low at all studied sites in late 2006 and 2007, and increased only slightly in 2009. Interestingly, the most abundant species during early succession were also prominent in this area prior to the eruption. Our results show that nematodes are extremely influenced by volcanic eruptions and need a long period of time to colonize the lava-flooded area in greater numbers and richness. We hypothesize that low food availability on the young bare basalt and harsh environmental conditions at early succession vent sites might hinder a more successful nematode establishment. In addition to the newly established active vent sites we also studied an inactive vent site that was not directly hit by the eruption but whose vent fluid had ceased after the eruption. At this inactive and older vent, diversity was also relatively low but was higher than at the younger, newly established sites. In addition to the ecological analyses, we here describe the two most abundant species found at inactive vents, namely Neochromadora aff. poecilosoma De Mann 1893 and Linhomoeus caudipapillosus sp. n.  相似文献   
89.
Many pathogenic Gram‐negative bacteria possess type IV secretion systems (T4SS) to inject effector proteins directly into host cells to modulate cellular processes to their benefit. The human bacterial pathogen Helicobacter pylori, a major aetiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma, harbours the cag‐T4SS to inject the cytotoxin associated Antigen (CagA) into gastric epithelial cells. This results in deregulation of major signalling cascades, actin‐cytoskeletal rearrangements and eventually gastric cancer. We show here that a pre‐infection with live H. pylori has a dose‐dependent negative effect on the CagA translocation efficiency of a later infecting strain. This effect of the ‘first’ strain was independent of any of its T4SS, the vacuolating cytotoxin (VacA) or flagella. Other bacterial pathogens, e.g. pathogenic Escherichia coli, Campylobacter jejuni, Staphylococcus aureus, or commensal bacteria, such as lactobacilli, were unable to interfere with H. pylori's CagA translocation capacity in the same way. This interference was independent of the β1 integrin receptor availability for H. pylori, but certain H. pylori outer membrane proteins, such as HopI, HopQ or AlpAB, were essential for the effect. We suggest that the specific interference mechanism induced by H. pylori represents a cellularresponse to restrict and control CagA translocation into a host cell to control the cellular damage.  相似文献   
90.

Background

Klebsiella pneumoniae is a leading cause of severe hospital-acquired respiratory tract infections and death but little is known regarding the modulation of respiratory dendritic cell (DC) subsets. Plasmacytoid DC (pDC) are specialized type 1 interferon producing cells and considered to be classical mediators of antiviral immunity.

Method

By using multiparameter flow cytometry analysis we have analysed the modulation of respiratory DC subsets after intratracheal Klebsiella pneumonia infection.

Results

Data indicate that pDCs and MoDC were markedly elevated in the post acute pneumonia phase when compared to mock-infected controls. Analysis of draining mediastinal lymph nodes revealed a rapid increase of activated CD103+ DC, CD11b+ DC and MoDC within 48 h post infection. Lung pDC identification during bacterial pneumonia was confirmed by extended phenotyping for 120G8, mPDCA-1 and Siglec-H expression and by demonstration of high Interferon-alpha producing capacity after cell sorting. Cytokine expression analysis of ex vivo-sorted respiratory DC subpopulations from infected animals revealed elevated Interferon-alpha in pDC, elevated IFN-gamma, IL-4 and IL-13 in CD103+ DC and IL-19 and IL-12p35 in CD11b+ DC subsets in comparison to CD11c+ MHC-class IIlow cells indicating distinct functional roles. Antigen-specific naive CD4+ T cell stimulatory capacity of purified respiratory DC subsets was analysed in a model system with purified ovalbumin T cell receptor transgenic naive CD4+ responder T cells and respiratory DC subsets, pulsed with ovalbumin and matured with Klebsiella pneumoniae lysate. CD103+ DC and CD11b+ DC subsets represented the most potent naive CD4+ T helper cell activators.

Conclusion

These results provide novel insight into the activation of respiratory DC subsets during Klebsiella pneumonia infection. The detection of increased respiratory pDC numbers in bacterial pneumonia may indicate possible novel pDC functions with respect to lung repair and regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号