首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4647篇
  免费   367篇
  国内免费   3篇
  5017篇
  2023年   12篇
  2022年   42篇
  2021年   78篇
  2020年   48篇
  2019年   60篇
  2018年   62篇
  2017年   72篇
  2016年   131篇
  2015年   212篇
  2014年   217篇
  2013年   300篇
  2012年   387篇
  2011年   379篇
  2010年   259篇
  2009年   226篇
  2008年   299篇
  2007年   323篇
  2006年   296篇
  2005年   248篇
  2004年   265篇
  2003年   235篇
  2002年   215篇
  2001年   44篇
  2000年   39篇
  1999年   58篇
  1998年   70篇
  1997年   45篇
  1996年   40篇
  1995年   48篇
  1994年   39篇
  1993年   35篇
  1992年   28篇
  1991年   27篇
  1990年   27篇
  1989年   19篇
  1988年   14篇
  1987年   13篇
  1986年   12篇
  1985年   20篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1974年   3篇
  1972年   5篇
  1971年   3篇
  1966年   4篇
排序方式: 共有5017条查询结果,搜索用时 31 毫秒
21.
While pleiotropic adaptive mutations are thought to be central for evolution, little is known on the downstream molecular effects allowing adaptation to complex ecologically relevant environments. Here we show that Escherichia coli MG1655 adapts rapidly to the intestine of germ-free mice by single point mutations in EnvZ/OmpR two-component signal transduction system, which controls more than 100 genes. The selective advantage conferred by the mutations that modulate EnvZ/OmpR activities was the result of their independent and additive effects on flagellin expression and permeability. These results obtained in vivo thus suggest that global regulators may have evolved to coordinate activities that need to be fine-tuned simultaneously during adaptation to complex environments and that mutations in such regulators permit adjustment of the boundaries of physiological adaptation when switching between two very distinct environments.  相似文献   
22.
The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK2) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK2 complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a Vmax of 1.25 μmol Pi/min/mg and a Km of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIAGlc, a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.  相似文献   
23.
Parasites play important roles in local population dynamics and genetic structure. However, due to insufficient diagnostic tools, detailed host-parasite interactions may remain concealed by hidden parasite diversity in natural systems. Microscopic examination of 19 European lake Daphnia populations revealed the presence of three groups of parasites: fungi, microsporidia, and oomycetes. For most of these parasites no genetic markers have been described so far. Based on sequence similarities of the nuclear small-subunit and internal transcribed spacer (ITS) rRNA gene regions, one fungus, four microsporidian, and nine oomycete taxa were discovered in 147 infected Daphnia (and/or three other zooplankton crustaceans). Additionally, cloning of rRNA gene regions revealed parasite sequence variation within host individuals. This was most pronounced in the ITS region of one microsporidian taxon, where the within-host sequence variation ranged from 1.7% to 5.3% polymorphic sites for parasite isolates from 14 different geographical locations. Interestingly, the parasite isolates from close locations grouped together based on sequence similarities, suggesting that there was parasite dispersal. Taken together, the data obtained in this study revealed hidden diversity of parasite communities in Daphnia lake populations. Moreover, a higher level of resolution for identifying parasite strains makes it possible to test new hypotheses with respect to parasite dispersal, transmission routes, and coinfection.During the last decade, microparasites of Daphnia species, which are small zooplankton crustaceans, have become a popular study system in ecological and evolutionary research (for a review, see reference 15). It has been shown both in the field and under controlled laboratory conditions that parasites have a substantial impact on Daphnia fitness (7, 21, 52). Parasite-induced reductions in Daphnia population density (11, 12) or even population crashes (17) might result in disruptions of aquatic food webs, as daphnids play important roles as main phytoplankton grazers and as a major food of planktivorous fish (27). Moreover, as infections are often genotype specific (6, 8), they can lead to changes in the gene pool of a Daphnia population (7, 14), sometimes significantly increasing the genetic diversity of the host population (12, 54). Thus, Daphnia parasites cause not only ecological but also evolutionary changes in aquatic systems.Conclusions regarding the importance of parasites in natural systems require powerful tools to detect and properly identify parasite taxa. Thus far, few species-specific molecular markers have been developed for Daphnia parasites (33, 38, 39, 41) and then used in experimental studies (3). In surveys of natural Daphnia populations, parasite identification has been based primarily on microscopic examination (4, 5, 29, 52), with only one exception (32). The parasites recorded in natural populations of Daphnia are thus considered members of certain taxa, or even species, without genetic confirmation. The fact that molecular markers are not used to characterize Daphnia infections makes it difficult to compare epidemic patterns across different habitats and/or various field surveys, as parasites cannot be unambiguously identified by microscopic examination alone. Even if microscopic identification is theoretically possible (for example, by examining ultrastructural morphology by electron microscopy [37]), this approach is not feasible for routine analysis. Consequently, classification of parasites that actually belong to different taxa in the same group might introduce noise into field surveys, as parasite taxa differ widely in virulence and host range (for a review, see reference 15).Most of the known Daphnia parasites that have been described were obtained from small temporary ponds and rock pools (4, 16, 43). In permanent lakes, lower parasite diversity was assumed, mainly because increased fish predation reduces the population density of potential hosts (18), whereas high host density is a crucial determinant of epidemic spread (1, 2, 45). In addition, infected Daphnia spp. are more vulnerable to fish that hunt visually due to loss of their transparent appearance (11, 13). On the other hand, it was recently shown that even if Daphnia host density was reduced by selective fish predation, the prevalence of infection did not decline, probably due to the very high rates of transmission of the parasite that was observed (11). In contrast, we expected that the highly heterogeneous biotic and abiotic conditions in permanent lakes (27) would provide a variety of niches (for a review, see reference 47), which also favor a high level of parasite diversity. Therefore, Czech canyon-shaped reservoirs were chosen as our main study systems, because in these lakes environmental gradients are particularly pronounced in both the horizontal and vertical dimensions (42). Moreover, the Daphnia communities of these reservoirs are dominated by members of the Daphnia longispina complex (35), taxa which have previously been shown to be infected by a variety of parasites (52).The results of our study revealed a high level of diversity of Daphnia parasites in permanent lakes. Fourteen different parasite taxa were detected using nuclear small-subunit (SSU) and internal transcribed spacer (ITS) rRNA gene sequence information. In addition, a high level of sequence variation was observed in the ITS region of one microsporidian taxon. Thus, molecular markers are now available which allow discrimination with high resolution among and within parasite taxa and provide tools to address more detailed questions concerning lake Daphnia-microparasite systems.  相似文献   
24.
While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.  相似文献   
25.
Isolated P450 monooxygenases have for long been neglected catalysts in enzyme technology. This is surprising as they display a remarkable substrate specificity catalyzing reactions, which represent a challenge for classic organic chemistry. On the other hand, many P450 monooxygenases are membrane bound, depend on rather complicated electron transfer systems and require expensive cofactors such as NAD(P)H. Their activities are low, and stability leaves much to be desired. The use of bacterial P450 monooxygenases from CYP102 family allows overcoming some of these handicaps. They are soluble and their turnovers are high, presumably because their N-terminal heme monooxygenase and their C-terminal diflavin reductase domain are covalently linked. In recent years, protein engineering approaches have been successfully used to turn CYP102 monooxgenases into powerful biocatalysts.  相似文献   
26.
27.

Background

Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins.

Results

Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts.

Conclusions

Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.  相似文献   
28.
29.
We compared the expression of a functional recombinant TMVspecific fullsize antibody (rAb29) in both the apoplast and cytosol of tobacco plants and a single chain antibody fragment (scFv29), derived from rAb29, was expressed in the cytosol. Cloned heavy and light chain cDNAs of fullsize rAb29, which binds to TMV coat protein monomers, were integrated into the plant expression vector pSS. The fullsize rAb29 was expressed in the cytosol and targeted to the apoplast by including the original murine antibody leader sequences. Levels of functional fullsize rAb29 expression were high in the apoplast (up to 8.5g per gram leaf tissue), whereas cytosolic expression was low or at the ELISA detection limit. Sequences of the variable domains of rAb29 light and heavy chain were used to generate the single chain antibody scFv29, which was expressed in the periplasmic space of E.coli and showed the same binding specificity as fullsize rAb29. In addition, scFv29 was functionally expressed in the cytosol of tobacco plants and plant derived scFv29 maintained same binding specificity to TMVcoat protein monomers as rAb29.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号