全文获取类型
收费全文 | 4629篇 |
免费 | 364篇 |
国内免费 | 3篇 |
专业分类
4996篇 |
出版年
2023年 | 12篇 |
2022年 | 42篇 |
2021年 | 78篇 |
2020年 | 48篇 |
2019年 | 60篇 |
2018年 | 62篇 |
2017年 | 72篇 |
2016年 | 131篇 |
2015年 | 212篇 |
2014年 | 217篇 |
2013年 | 299篇 |
2012年 | 384篇 |
2011年 | 378篇 |
2010年 | 256篇 |
2009年 | 225篇 |
2008年 | 294篇 |
2007年 | 322篇 |
2006年 | 296篇 |
2005年 | 248篇 |
2004年 | 265篇 |
2003年 | 235篇 |
2002年 | 215篇 |
2001年 | 44篇 |
2000年 | 37篇 |
1999年 | 56篇 |
1998年 | 69篇 |
1997年 | 45篇 |
1996年 | 40篇 |
1995年 | 47篇 |
1994年 | 39篇 |
1993年 | 35篇 |
1992年 | 28篇 |
1991年 | 27篇 |
1990年 | 27篇 |
1989年 | 19篇 |
1988年 | 14篇 |
1987年 | 13篇 |
1986年 | 12篇 |
1985年 | 20篇 |
1984年 | 8篇 |
1983年 | 4篇 |
1982年 | 7篇 |
1981年 | 10篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1974年 | 3篇 |
1972年 | 5篇 |
1971年 | 3篇 |
1966年 | 4篇 |
排序方式: 共有4996条查询结果,搜索用时 15 毫秒
81.
Rütgen BC Willenbrock S Reimann-Berg N Walter I Fuchs-Baumgartinger A Wagner S Kovacic B Essler SE Schwendenwein I Nolte I Saalmüller A Murua Escobar H 《PloS one》2012,7(6):e40078
Cell lines are key tools in cancer research allowing the generation of neoplasias in animal models resembling the initial tumours able to mimic the original neoplasias closely in vivo. Canine lymphoma is the major hematopoietic malignancy in dogs and considered as a valuable spontaneous large animal model for human Non-Hodgkin's Lymphoma (NHL). Herein we describe the establishment and characterisation of an in vivo model using the canine B-cell lymphoma cell line CLBL-1 analysing the stability of the induced tumours and the ability to resemble the original material. CLBL-1 was injected into Rag2(-/-)γ(c) (-/-) mice. The generated tumor material was analysed by immunophenotyping and histopathology and used to establish the cell line CLBL-1M. Both cell lines were karyotyped for detection of chromosomal aberrations. Additionally, CLBL-1 was stimulated with IL-2 and DSP30 as described for primary canine B-cell lymphomas and NHL to examine the stimulatory effect on cell proliferation. CLBL-1 in vivo application resulted in lymphoma-like disease and tumor formation. Immunophenotypic analysis of tumorous material showed expression of CD45(+), MHCII(+), CD11a(+) and CD79αcy(+). PARR analysis showed positivity for IgH indicating a monoclonal character. These cytogenetic, molecular, immunophenotypical and histological characterisations of the in vivo model reveal that the induced tumours and thereof generated cell line resemble closely the original material. After DSP30 and IL-2 stimulation, CLBL-1 showed to respond in the same way as primary material. The herein described CLBL-1 in vivo model provides a highly stable tool for B-cell lymphoma research in veterinary and human medicine allowing various further in vivo studies. 相似文献
82.
83.
Ivison SM Graham NR Bernales CQ Kifayet A Ng N Shobab LA Steiner TS 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(9):5735-5743
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with G?6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor G?6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells. 相似文献
84.
Sabine Filker Steffen Kühner Melanie Heckwolf Jan Dierking Thorsten Stoeck 《Environmental microbiology》2019,21(2):603-617
Remane's Artenminimum at the horohalinicum is a fundamental concept in ecology to describe and explain the distribution of organisms along salinity gradients. However, a recent metadata analysis challenged this concept for protists, proposing a species maximum in brackish waters. Due to data bias, this literature-based investigation was highly discussed. Reliable data verifying or rejecting the species minimum for protists in brackish waters were critically lacking. Here, we sampled a pronounced salinity gradient along a west–east transect in the Baltic Sea and analysed protistan plankton communities using high-throughput eDNA metabarcoding. A strong salinity barrier at the upper limit of the horohalinicum and 10 psu appeared to select for significant shifts in protistan community structures, with dinoflagellates being dominant at lower salinities, and dictyochophytes and diatoms being keyplayers at higher salinities. Also in vertical water column gradients in deeper basins (Kiel Bight, Arkona and Bornholm Basin) appeared salinity as significant environmental determinant influencing alpha- and beta-diversity patterns. Importantly, alpha-diversity indices revealed species maxima in brackish waters, that is, indeed contrasting Remane's Artenminimum concept. Statistical analyses confirmed salinity as the major driving force for protistan community structuring with high significance. This suggests that macrobiota and microbial eukaryotes follow fundamentally different rules regarding diversity patterns in the transition zone from freshwater to marine waters. 相似文献
85.
The perivertebral musculature of lizards is critical for the stabilization and the mobilization of the trunk during locomotion. Some trunk muscles are also involved in ventilation. This dual function of trunk muscles in locomotion and ventilation leads to a biomechanical conflict in many lizards and constrains their ability to breathe while running (“axial constraint”) which likely is reflected by their high anaerobic scope. Furthermore, different foraging and predator‐escape strategies were shown to correlate with the metabolic profile of locomotor muscles in lizards. Because knowledge of muscle's fiber‐type composition may help to reveal a muscle's functional properties, we investigated the distribution pattern of muscle fiber types in the perivertebral musculature in two small lizard species with a generalized body shape and subjected to the axial constraint (Dipsosaurus dorsalis, Acanthodactylus maculatus) and one species that circumvents the axial constraint by means of gular pumping (Varanus exanthematicus). Additionally, these species differ in their predator‐escape and foraging behaviors. Using refined enzyme‐histochemical protocols, muscle fiber types were differentiated in serial cross‐sections through the trunk, maintaining the anatomical relationships between the skeleton and the musculature. The fiber composition in Dipsosaurus and Acanthodactylus showed a highly glycolytic profile, consistent with their intermittent locomotor style and reliance on anaerobic metabolism during activity. Because early representatives of diapsids resemble these two species in several postcranial characters, we suggest that this glycolytic profile represents the plesiomorphic condition for diapsids. In Varanus, we found a high proportion of oxidative fibers in all muscles, which is in accordance with its high aerobic scope and capability of sustained locomotion. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc. 相似文献
86.
Mycobacterium tuberculosis (Mtb) is thought to preferentially rely on fatty acid metabolism to both establish and maintain chronic infections. Its metabolic network, however, allows efficient co-catabolism of multiple carbon substrates. To gain insight into the importance of carbohydrate substrates for Mtb pathogenesis we evaluated the role of glucose phosphorylation, the first reaction in glycolysis. We discovered that Mtb expresses two functional glucokinases. Mtb required the polyphosphate glucokinase PPGK for normal growth on glucose, while its second glucokinase GLKA was dispensable. 13C-based metabolomic profiling revealed that both enzymes are capable of incorporating glucose into Mtb''s central carbon metabolism, with PPGK serving as dominant glucokinase in wild type (wt) Mtb. When both glucokinase genes, ppgK and glkA, were deleted from its genome, Mtb was unable to use external glucose as substrate for growth or metabolism. Characterization of the glucokinase mutants in mouse infections demonstrated that glucose phosphorylation is dispensable for establishing infection in mice. Surprisingly, however, the glucokinase double mutant failed to persist normally in lungs, which suggests that Mtb has access to glucose in vivo and relies on glucose phosphorylation to survive during chronic mouse infections. 相似文献
87.
Kornelia Neveling Lilian?A. Martinez-Carrera Irmgard H?lker Angelien Heister Aad Verrips Seyyed?Mohsen Hosseini-Barkooie Christian Gilissen Sascha Vermeer Maartje Pennings Rowdy Meijer Margot te?Riele Catharina?J.M. Frijns Oksana Suchowersky Linda MacLaren Sabine Rudnik-Sch?neborn Richard?J. Sinke Klaus Zerres R.?Brian Lowry Henny?H. Lemmink Lutz Garbes Joris?A. Veltman Helenius?J. Schelhaas Hans Scheffer Brunhilde Wirth 《American journal of human genetics》2013,92(6):946-954
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA. 相似文献
88.
Sabine S. Neukamm Jennifer Ott Sascha Dammeier Rainer Lehmann Hans-Ulrich H?ring Erwin Schleicher Cora Weigert 《The Journal of biological chemistry》2013,288(23):16403-16415
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability. 相似文献
89.
Nitrous oxide and methane fluxes of a pristine slope mire in the German National Park Harz Mountains
Nadine Tauchnitz Rainer Brumme Sabine Bernsdorf Ralph Meissner 《Plant and Soil》2008,303(1-2):131-138
Pristine peatlands covered by Histosols (bogs and fens) with high water table and a restricted oxygen (O2) availability are known to have low emissions of nitrous oxide (N2O) but may be a significant source for atmospheric methane (CH4) which are both important greenhouse gases. For the first time N2O and CH4 fluxes of a pristine slope mire in the German Harz Mountains have been monitored. Previously reported peatlands are characterised
by anaerobic conditions due to high water table levels. Slope mires monitored here receive O2 through slope water inflow. Gas fluxes have been monitored deploying closed chamber method on a central non-forested area
and a forested area at the periphery of the slope mire. By means of groundwater piezometers water table levels, ammonium and
nitrate contents as well as hydro-chemical variables like oxygen content and redox potential of the mire pore water have been
concurrently measured with trace gas fluxes at both monitoring sites of the slope mire. The slope mire took up small amounts
of atmospheric methane at a rate of −0.02 ± 0.01 kg C ha−1 year−1 revealing no significant difference between the forested and non-forested site. Higher uptake rates were observed during
low water table level. In contrast to pristine peatlands influx of oxygen containing pore water into slope mire does limit
reduction processes and resultant CH4 emission. N2O fluxes of the forested and non-forested sites of the slope mire did not differ and amounted to 0.25 ± 0.44 kg N ha−1 year−1. Higher emissions were observed at low water table levels and during thawing periods. In spite of favourable conditions N2O fluxes of the slope mire have been comparable to those of pristine peatlands. 相似文献
90.