首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   34篇
  2022年   3篇
  2021年   8篇
  2019年   10篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   12篇
  2014年   10篇
  2013年   13篇
  2012年   33篇
  2011年   25篇
  2010年   17篇
  2009年   15篇
  2008年   19篇
  2007年   22篇
  2006年   12篇
  2005年   13篇
  2004年   13篇
  2003年   15篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   11篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1959年   2篇
  1957年   3篇
  1941年   4篇
排序方式: 共有407条查询结果,搜索用时 234 毫秒
121.
Inhalation of gas mixtures containing different concentrations of FC 12 by anesthetized and normally oxygenated dogs produces blood levels of FC 12 which are stable and proportional to the rate of FC 12 in the mixture. From the arterial concentration of 40 microgram/ml FC 12 (5 % FC 12 mixture) and over, FC 12 alone causes effects proportional to doses: arterial pressure decrease with tachycardia. At high rates of FC 12 tachypnoea and slight morphological alterations of the electrocardiogram can be recorded. Arhythmia never occurs under the action of FC 12 alone even at maximum arterial concentration reached here : 230 microgram/ml (40 % FC 12 mixture). Recorded disturbances are always reversible. The intravenous perfusion of epinephrine alone evokes the appearance of premature contractions at the only dose of 5 microgram/kg/mn. The presence of FC 12 in blood conjoined with epinephrine induces the inhibition of the hypertensive action of epinephrine at high concentration and lowers the arhythmogenic threshold. The dog is clearly more sensitive than the rabbit to the arhythmogenic action of epinephrine and FC 12. The required rates of epinephrine and FC 12 validate the hypothesis of cardiac sensitization by FC 12 to the arhythmogenic action of circulating adrenaline to explain the cases of sudden "sniffing" deaths in man.  相似文献   
122.
123.
124.
I A Lessard  V L Healy  I S Park  C T Walsh 《Biochemistry》1999,38(42):14006-14022
Bacteria with either intrinsic or inducible resistance to vancomycin make peptidoglycan (PG) precursors of lowered affinity for the antibiotic by switching the PG-D-Ala-D-Ala termini that are the antibiotic-binding target to either PG-D-Ala-D-lactate or PG-D-Ala-D-Ser as a consequence of altered specificity of the D-Ala-D-X ligases in the cell wall biosynthetic pathway. The VanA ligase of vancomycin-resistant enterococci, a D-Ala-D-lactate depsipeptide ligase, has the ability to recognize and activate the weak nucleophile D-lactate selectively over D-Ala(2) to capture the D-Ala(1)-OPO(3)(2)(-) intermediate in the ligase active site. To ensure this selectivity in catalysis, VanA largely rejects the protonated (NH(3)(+)) form of D-Ala at subsite 2 (K(M2) of 210 mM at pH 7.5) but not at subsite 1. In contrast, the deprotonated (NH(2)) form of D-Ala (K(M2) of 0.66 mM, k(cat) of 550 min(-)(1)) is a 17-fold better substrate compared to D-lactate (K(M) of 0.69 mM, k(cat) of 32 min(-)(1)). The low concentration of the free amine form of D-Ala at physiological conditions (i.e., 0.1% at pH 7.0) explains the inefficiency of VanA in dipeptide synthesis. Mutational analysis revealed a residue in the putative omega-loop region, Arg242, which is partially responsible for electrostatically repelling the protonated form of D-Ala(2). The VanA enzyme represents a subfamily of D-Ala-D-X ligases in which two key active-site residues (Lys215 and Tyr216) in the active-site omega-loop of the Escherichia coli D-Ala-D-Ala ligase are absent. To look for functional complements in VanA, we have mutated 20 residues and evaluated effects on catalytic efficiency for both D-Ala-D-Ala dipeptide and D-Ala-D-lactate depsipeptide ligation. Mutation of Asp232 caused substantial defects in both dipeptide and depsipeptide ligase activity, suggesting a role in maintaining the loop position. In contrast, the H244A mutation caused an increase in K(M2) for D-lactate but not D-Ala, indicating a differential role for His244 in the recognition of the weaker nucleophile D-lactate. Replacement of the VanA omega-loop by that of VanC2, a D-Ala-D-Ser ligase, eliminated D-Ala-D-lactate activity while improving by 3-fold the catalytic efficacy of D-Ala-D-Ala and D-Ala-D-Ser activity.  相似文献   
125.
The pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus was reconstituted in vitro from recombinant proteins derived from genes over-expressed in Escherichia coli. Titrations of the icosahedral (60-mer) dihydrolipoyl acetyltransferase (E2) core component with the pyruvate decarboxylase (E1, alpha2beta2) and dihydrolipoyl dehydrogenase (E3, alpha2) peripheral components indicated a variable composition defined predominantly by tight and mutually exclusive binding of E1 and E3 with the peripheral subunit-binding domain of each E2 chain. However, both analysis of the polypeptide chain ratios in complexes generated from various mixtures of E1 and E3, and displacement of E1 or E3 from E1-E2 or E3-E2 subcomplexes by E3 or E1, respectively, showed that the multienzyme complex does not behave as a simple competitive binding system. This implies the existence of secondary interactions between the E1 and E3 subunits and E2 that only become apparent on assembly. Exact geometrical distribution of E1 and E3 is unlikely and the results are best explained by preferential arrangements of E1 and E3 on the surface of the E2 core, superimposed on their mutually exclusive binding to the peripheral subunit-binding domain of the E2 chain. Correlation of the subunit composition with the overall catalytic activity of the enzyme complex confirmed the lack of any requirement for precise stoichiometry or strict geometric arrangement of the three catalytic sites and emphasized the crucial importance of the flexibility associated with the lipoyl domains and intramolecular acetyl group transfer in the mechanism of active-site coupling.  相似文献   
126.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1. 16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to alpha-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   
127.
In this paper, a sex-dependent matrix game haploid model is investigated. For this model, since the phenotypes of female and male individuals are determined by alleles located at a single locus and are sex dependent, any given genotype corresponds to a strategy pair. Thus, a strategy pair is an ESS if and only if the allele corresponding to this strategy pair cannot be invaded by any mutant allele. We show that an ESS equilibrium must be locally asymptotically stable if it exists.  相似文献   
128.
As part of a program to develop biological wastewatertreatment systems for cold climate areas four strainsof filamentous, mat-forming cyanobacteria isolatedfrom Arctic and Antarctic environments were evaluatedfor their nutrient stripping and growth capabilities. A tropical strain, Phormidium bohneri, known forits excellent performance in wastewater treatment, wasused as a comparison. Experiments were done inartificial media under controlled batch cultureconditions to avoid interactions with indigenousmicroorganisms such as bacteria and protozoa. Theculture medium simulated real effluents containinghigh concentrations of nitrate and phosphate.Temperatures (5, 15 and 25°C) and irradiances(80, 210, 350, 640 and 1470 µmol photon m-2s-1) wereselected according to situations encountered in avariety of field conditions. For all irradiancelevels, growth was satisfactory at 15 and 25 °C,but limited at 5 °C. At 25 °C a satisfactory nitrogen removal rate (3.5and 4.0 mg N L-1d-1) was obtained forone polar strain (Phormidium tenue) and thecontrol P. bohneri. At 15 °C, the bestnitrogen removal rate (3.5 mg N L-1d-1)was measured with P. bohneri while the best ratefor the polar strains was around 2.3 mg NL-1d-1. At 15 °C, a phosphorusremoval rate of 0.6 mg P L-1d-1 wasobtained with P. bohneri and polar strains P. tenue and Oscillatoria O-210. Nitrogen(NO3 -) and phosphorus (PO4 3-)uptake rates increased as a function of irradianceover the range 80 to 350 molphoton m-2s-1. Our results indicate thattertiary biological wastewater treatment at lowtemperatures (5 °C) cannot be anticipated withthe polar strains tested, because they arepsychrotrophic rather than psychrophilic and thus growtoo slowly under conditions of extreme cold. However, it appears that these cyanobacteria would beuseful for wastewater treatment at moderately cooltemperatures (c. 15 °C), which are commonduring spring and fall in northern climates.  相似文献   
129.
Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFalpha exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h3 versus 69 h4; P=0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P=0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P=0.014) and further elevated by acute exposure to TNFalpha (+230(52)%; P=0.019 versus +123(24)%; P=0.025, respectively). TNFalpha also significantly increased basal glucose transport rates (+44(14)%; P=0.006 versus +34(11)%; P=0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFalpha exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.  相似文献   
130.
PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号