全文获取类型
收费全文 | 223篇 |
免费 | 5篇 |
专业分类
228篇 |
出版年
2019年 | 2篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 9篇 |
2014年 | 16篇 |
2013年 | 11篇 |
2012年 | 14篇 |
2011年 | 12篇 |
2010年 | 12篇 |
2009年 | 4篇 |
2008年 | 8篇 |
2007年 | 8篇 |
2006年 | 7篇 |
2005年 | 10篇 |
2004年 | 13篇 |
2003年 | 12篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 8篇 |
1999年 | 7篇 |
1998年 | 6篇 |
1997年 | 6篇 |
1996年 | 2篇 |
1995年 | 5篇 |
1994年 | 3篇 |
1993年 | 2篇 |
1992年 | 7篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 9篇 |
1987年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有228条查询结果,搜索用时 0 毫秒
91.
van de Geijn FE de Man YA Wuhrer M Willemsen SP Deelder AM Hazes JM Dolhain RJ 《Arthritis research & therapy》2011,13(1):R10
Introduction
Rheumatoid arthritis (RA) improves during pregnancy and flares after delivery. It has been hypothesized that high levels of the complement factor mannose-binding lectin (MBL) are associated with a favourable disease course of RA by facilitating the clearance of pathogenic immunoglobulin G (IgG) lacking galactose sugar moieties. During pregnancy, increased galactosylation of IgG and simultaneously increased MBL levels can be observed, with the latter being strictly related to maternal MBL genotypes. Therefore, increased MBL levels in concert with increased IgG galactosylation may be associated with pregnancy-induced improvement of RA. The objective of this study was to investigate whether MBL genotypes are associated with changes in RA disease activity and with changes in IgG galactosylation during pregnancy and in the postpartum period. We also studied the association between MBL genotypes and pregnancy outcomes in RA. 相似文献92.
Under attack by herbivores, plants produce a blend of “herbivore-induced plant volatiles (HIPV)” that help natural enemies of herbivores locating their prey, thereby helping plants to reduce damage from herbivory. The amount of HIPV emitted by plants increases with herbivore density and is positively correlated with the intensity of the olfactory response of natural enemies. In this study, we determined the effects of density or within-plant distribution of the herbivorous mite Mononychellus tanajoa on movement of the predatory mite Typhlodromalus aripo out of apices of cassava plants. Proportions of T. aripo that migrated out of apex, and distances traveled were significantly higher when M. tanajoa was further away from the apex—i.e. on middle or bottom leaves of cassava plants—than when present on top leaves, or absent from the plant. This supports previous field observations that T. aripo is not a sit-and-wait predator but uses HIPV to search and locate its prey within cassava plant. 相似文献
93.
94.
In well-mixed populations of predators and prey, natural selection favors predators with high rates of prey consumption and population growth. When spatial structure prevents the populations from being well mixed, such predators may have a selective disadvantage because they do not make full use of the prey's growth capacity and hence produce fewer propagules. The best strategy then depends on the degree to which predators can monopolize the exploitation of local prey populations, which in turn depends on the spatial structure, the number of migrants, and, in particular, the stochastic nature of the colonization process. To analyze the evolutionary dynamics of predators in a spatially structured predator-prey system, we performed simulations with a metapopulation model that has explicit local dynamics of nonpersistent populations, keeps track of the number of emigrants entering the migration pool, assumes individuals within local populations as well as within the migration pool to be well mixed, and takes stochastic colonization into account. We investigated which of the predator's exploitation strategies are evolutionarily stable and whether these strategies minimize the overall density of prey, as is the case in Lotka-Volterra-type models of competitive exclusion. This was analyzed by pairwise invasibility plots based on short-term simulations and tested by long-term simulation experiments of competition between resident and mutant predator-types that differed in one of the following parameters: the prey-to-predator conversion efficiency, the per capita prey consumption rate, or the per capita emigration rate from local populations. In addition, we asked which of these three strategies are most likely to evolve. Our simulations showed that under selection for conversion efficiency the predator-prey system always goes globally extinct yet persists under selection for consumption or emigration rates and that the evolutionarily stable (ES) exploitation strategies do not maximize local population growth rates. The most successful exploitation strategy minimizes the overall density of prey but does not make it settle exactly at the minimum. The system did not settle at the point where the mean time to co-invasion (i.e., immigration of a second predator in a local prey population) equals the mean local interaction time (an idea borne out from studies on host exploitation strategies in host-pathogen systems) but rather where the mean time to co-invasion was larger. The ES exploitation strategies represent more prudent strategies than the ones that minimize prey density. Finally, we show that-compared to consumption-emigration is a more likely target for selection to achieve prudent exploitation and that prudent exploitation strategies can evolve only provided the prey-to-predator conversion efficiency is subject to constraints. 相似文献
95.
Sara MW Hyldig Nicola Croxall David A Contreras Preben D Thomsen Ramiro Alberio 《BMC developmental biology》2011,11(1):11-1
Background
Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. 相似文献96.
Amblyseius idaeus is a drought-resistant predatory mite of tetranychid spider mites. In this paper, life-history parameters ofA. idaeus and a morphologically similar species,A. anonymus, are measured and compared on a diet ofTetranychus urticae. Intrinsic rates of increase of both phytoseiids are similar, and are comparable to rates of phytoseiids that successfully controlTetranychus species. This makes both species promising candidates as biological control agents,A. idaeus especially under dry conditions. 相似文献
97.
Goldstein DB; Zhivotovsky LA; Nayar K; Linares AR; Cavalli-Sforza LL; Feldman MW 《Molecular biology and evolution》1996,13(9):1213-1218
It has recently been suggested that observed levels of variation at
microsatellite loci can be used to infer patterns of selection in genomes
and to assess demographic history. In order to evaluate the feasibility of
these suggestions it is necessary to know something about how levels of
variation at microsatellite loci are expected to fluctuate due simply to
stochasticity in the processes of mutation and inheritance (genetic
sampling). Here we use recently derived properties of the stepwise mutation
model to place confidence intervals around the variance in repeat score
that is expected at mutation-drift equilibrium and outline a statistical
test for whether an observed value differs significantly from expectation.
We also develop confidence intervals for the time course of the buildup of
variation following a complete elimination of variation, such as might be
caused by a selective sweep or an extreme population bottleneck. We apply
these methods to the variation observed at human Y-specific
microsatellites. Although a number of authors have suggested the
possibility of a very recent sweep, our analyses suggest that a sweep or
extreme bottleneck is unlikely to have occurred anytime during the last
approximately 74,000 years. To generate this result we use a recently
estimated mutation rate for microsatellite loci of 5.6 x 10(-4) along with
the variation observed at autosomal microsatellite loci to estimate the
human effective population size. This estimate is 18,000, implying an
effective number of 4,500 Y chromosomes. One important general conclusion
to emerge from this study is that in order to reject mutation-drift
equilibrium at a set of linked microsatellite loci it is necessary to have
an unreasonably large number of loci unless the observed variance is far
below that expected at mutation-drift equilibrium.
相似文献
98.
Winnie CW Chu Wynnie MW Lam Bobby KW Ng Lam Tze-ping Kwong-man Lee Xia Guo Jack CY Cheng R Geoffrey Burwell Peter H Dangerfield Tim Jaspan 《Scoliosis》2008,3(1):1-24
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). As part of its mission to widen understanding of scoliosis etiology, the International Federated Body on Scoliosis Etiology (IBSE) introduced the electronic focus group (EFG) as a means of increasing debate on knowledge of important topics. This has been designated as an on-line Delphi discussion. The Statement for this debate was written by Dr WCW Chu and colleagues who examine the spinal cord to vertebral growth interaction during adolescence in scoliosis. Using the multi-planar reconstruction technique of magnetic resonance imaging they investigated the relative length of spinal cord to vertebral column including ratios in 28 girls with AIS (mainly thoracic or double major curves) and 14 age-matched normal girls. Also evaluated were cerebellar tonsillar position, somatosensory evoked potentials (SSEPs), and clinical neurological examination. In severe AIS compared with normal controls, the vertebral column is significantly longer without detectable spinal cord lengthening. They speculate that anterior spinal column overgrowth relative to a normal length spinal cord exerts a stretching tethering force between the two ends, cranially and caudally leading to the initiation and progression of thoracic AIS. They support and develop the Roth-Porter concept of uncoupled neuro-osseous growth in the pathogenesis of AIS which now they prefer to term ' asynchronous neuro-osseous growth'. Morphological evidence about the curve apex suggests that the spinal cord is also affected, and a 'double pathology' is suggested. AIS is viewed as a disorder with a wide spectrum and a common neuroanatomical abnormality namely, a spinal cord of normal length but short relative to an abnormally lengthened anterior vertebral column. Neuroanatomical changes and/or abnormal neural function may be expressed only in severe cases. This asynchronous neuro-osseous growth concept is regarded as one component of a larger concept. The other component relates to the brain and cranium of AIS subjects because abnormalities have been found in brain (infratentorial and supratentorial) and skull (vault and base). The possible relevance of systemic melatonin-signaling pathway dysfunction, platelet calmodulin levels and putative vertebral vascular biology to the asynchronous neuro-osseous growth concept is discussed. A biomechanical model to test the spinal component of the concept is in hand. There is no published research on the biomechanical properties of the spinal cord for scoliosis specimens. Such research on normal spinal cords includes movements (kinematics), stress-strain responses to uniaxial loading, and anterior forces created by the stretched cord in forward flexion that may alter sagittal spinal shape during adolescent growth. The asynchronous neuro-osseous growth concept for the spine evokes controversy. Dr Chu and colleagues respond to five other concepts of pathogenesis for AIS and suggest that relative anterior spinal overgrowth and biomechanical growth modulation may also contribute to AIS pathogenesis. 相似文献
99.
Theory on intraguild (IG) predation predicts that coexistence of IG-predators and IG-prey is only possible for a limited set of parameter values, suggesting that IG-predation would not be common in nature. This is in conflict with the observation that IG-predation occurs in many natural systems. One possible explanation for this difference might be antipredator behaviour of the IG-prey, resulting in decreased strength of IG-predation. We studied the distribution of an IG-prey, the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae), in response to cues of its IG-predator, the predatory mite Iphiseius degenerans. Shortly after release, the majority of IG-prey was found on the patch without cues of IG-predators, suggesting that they can rapidly assess predation risk. IG-prey also avoided patches where conspecific juveniles had been killed by IG-predators. Because it is well known that antipredator behaviour in prey is affected by the diet of the predator, we also tested whether IG-prey change their distribution in response to the food of the IG-predators (pollen or conspecific juveniles), but found no evidence for this. The IG-prey laid fewer eggs on patches with cues of IG-predators than on patches without cues. Hence, IG-prey changed their distribution and oviposition in response to cues of IG-predators. This might weaken the strength of IG-predation, possibly providing more opportunities for IG-prey and IG-predators to co-exist. 相似文献
100.
Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring 总被引:1,自引:0,他引:1
Evidence is accumulating that herbivorous arthropods do not simply select host plants based on their quality, but also on the predation risk associated with different host plants. It has been suggested that herbivores exclude plant species with high predation risk from their host range. This assumes a constant, predictable predation risk as well as a rather static behaviour on the part of the herbivore; plants are ignored irrespective of the actual predation risk. We show that adult females of a small herbivore, the whitefly Bemisia tabaci, can learn to avoid plants with predatory mites that attack only juvenile whiteflies, while they accept host plants of the same species without predators. Predatory mites disperse more slowly than whiteflies; they cannot fly and walk from plant to plant. Hence, by avoiding plants with predators, the whiteflies create a temporary refuge for their offspring. We suggest that the experience of arthropod herbivores with risks associated with host plants plays an important role in their host plant selection. 相似文献