首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   5篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   16篇
  2013年   11篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   10篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   9篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
81.
To determine whether to use single or multiple predator species for biological pest control requires manipulative field experiments. We performed such tests in Benin (West Africa) in cassava fields infested by the cassava green mite Mononychellus tanajoa, and the cotton red mite Oligonychus gossypii. These fields also harboured the cassava apex-inhabiting predator Typhlodromalus aripo and either the leaf-inhabiting predator Amblydromalus manihoti or Euseius fustis. We manipulated predator species composition on individual plants to determine their effect on prey and predator densities. In fields with T. aripo plus A. manihoti, M. tanajoa densities were reduced by T. aripo alone or together with A. manihoti, but neither of these predators, alone or together, reduced O. gossypii densities. In fields with T. aripo plus E. fustis, T. aripo alone or together with E. fustis exerted significant control over O. gossypii, but weak control over M. tanajoa. Densities of any of the predator species were not affected by co-occurring predator species, suggesting a minor role for intraguild predation in the field, contrary to earlier experiments on small plants in the laboratory. We conclude that (1) T. aripo is the most effective predator species in suppressing M. tanajoa, (2) two predator species, T. aripo and E. fustis, are needed to suppress O. gossypii, and (3) predator species together on the same plant do not negatively affect each other nor the extent to which they control their prey. We argue that intraguild predation is reduced due to partial niche separation among predator species.  相似文献   
82.

Introduction

A hallmark of systemic autoimmune diseases like systemic lupus erythematosus (SLE) is the increased expression of interferon (IFN) type I inducible genes, so-called IFN type I signature. Recently, T-helper 17 subset (Th17 cells), which produces IL-17A, IL-17F, IL-21, and IL-22, has been implicated in SLE. As CCR6 enriches for Th17 cells, we used this approach to investigate whether CCR6+ memory T-helper cells producing IL-17A, IL-17F, IL-21, and/or IL-22 are increased in SLE patients and whether this increase is related to the presence of IFN type I signature.

Methods

In total, 25 SLE patients and 15 healthy controls (HCs) were included. SLE patients were divided into IFN type I signature-positive (IFN+) (n = 16) and negative (IFN-) (n = 9) patients, as assessed by mRNA expression of IFN-inducible genes (IFIGs) in monocytes. Expression of IL-17A, IL-17F, IL-21, and IL-22 by CD4+CD45RO+CCR6+ T cells (CCR6+ cells) was measured with flow cytometry and compared between IFN+, IFN- patients and HCs.

Results

Increased percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ cells were observed in IFN+ patients compared with IFN- patients and HCs. IL-17A and IL-17F expression within CCR6+ cells correlated significantly with IFIG expression. In addition, we found significant correlation between B-cell activating factor of the tumor necrosis family (BAFF)–a factor strongly correlating with IFN type I - and IL-21 producing CCR6+ cells.

Conclusions

We show for the first time higher percentages of IL-17A and IL-17A/IL-17F double-producing CCR6+ memory T-helper cells in IFN+ SLE patients, supporting the hypothesis that IFN type I co-acts with Th17 cytokines in SLE pathogenesis.  相似文献   
83.
84.
85.
Belliure B  Janssen A  Sabelis MW 《Oecologia》2008,156(4):797-806
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector.  相似文献   
86.
Many true parasites and parasitoids modify the behaviour of their host, and these changes are thought to be to the benefit of the parasites. However, field tests of this hypothesis are scarce, and it is often unclear whether the host or the parasite profits from the behavioural changes, or even if parasitism is a cause or consequence of the behaviour. We show that braconid parasitoids (Glyptapanteles sp.) induce their caterpillar host (Thyrinteina leucocerae) to behave as a bodyguard of the parasitoid pupae. After parasitoid larvae exit from the host to pupate, the host stops feeding, remains close to the pupae, knocks off predators with violent head-swings, and dies before reaching adulthood. Unparasitized caterpillars do not show these behaviours. In the field, the presence of bodyguard hosts resulted in a two-fold reduction in mortality of parasitoid pupae. Hence, the behaviour appears to be parasitoid-induced and confers benefits exclusively to the parasitoid.  相似文献   
87.
Plants produce defences that act directly on herbivores and indirectly via the attraction of natural enemies of herbivores. We examined the pleiotropic effects of direct chemical defence production on indirect defence employing near‐isogenic varieties of cucumber plants (Cucumis sativus) that differ qualitatively in the production of terpenoid cucurbitacins, the most bitter compounds known. In release–recapture experiments conducted in greenhouse common gardens, blind predatory mites were attracted to plants infested by herbivorous mites. Infested sweet plants (lacking cucurbitacins), however, attracted 37% more predatory mites than infested bitter plants (that produce constitutive and inducible cucurbitacins). Analysis of the headspace of plants revealed that production of cucurbitacins was genetically correlated with large increases in the qualitative and quantitative spectrum of volatile compounds produced by plants, including induced production of (E )‐β‐ocimene (3E )‐4,8‐dimethyl‐1,3,7‐nonatriene, (E,E)‐α‐farnesene, and methyl salicylate, all known to be attractants of predators. Nevertheless, plants that produced cucurbitacins were less attractive to predatory mites than plants that lacked cucurbitacins and predators were also half as fecund on these bitter plants. Thus, we provide novel evidence for an ecological trade‐off between direct and indirect plant defence. This cost of defence is mediated by the effects of cucurbitacins on predator fecundity and potentially by the production of volatile compounds that may be repellent to predators.  相似文献   
88.
We tested the capacity of the soil-dwelling predatory mite, Hypoapsis aculeifer , to control mites attacking lily bulbs. Experiments in the greenhouse and in the field showed that in the absence of predatory mites populations of the bulb mite, Rhizoglyphus robini , on lily bulbs increased, whereas the release of predatory mites either slowed down the increase - as observed in the field - or caused the bulb mites populations to decrease - as observed in the greenhouse. In all cases the population of predatory mites increased as long as bulb mite densities were not too low. However, within the first week after predator release there was usually a sharp decline to 10-40% of the original number released. Greenhouse experiments on intact lily bulbs in pots, boxes and 1 m 2 plots with peat soil showed that when released in a ratio of 1 predator to 2 or 5 prey, the predatory mite, Hypoaspis aculeifer , suppressed populations of bulb mites to less than 10 individual per bulb within 6 weeks. Elimination of bulb mites was observed only when the predator-to-prey ratio at release was equal to 3:1. Field experiments in 2 m 2 plots with intact bulbs in rather compact sandy soil showed that when released in ratio of 1 predator to 1 or 2 prey, the predatory mite, H. aculeifer , did not cause the population of bulb mites to decrease, but it did reduce their population growth. The initial predator-to-prey ratios required to achieve suppression (ca 1:2) or elimination (3:1) in the soil environment are much higher than those required for bulb mite elimination when lily bulb scales were embedded in a medium of vermiculite (ca 1:20). Among the possible causes are: (1) the initial losses of predators in the greenhouse and even more so in the field due to mortality and/or emigration from the experimental plots; (2) the lower temperatures in the greenhouse and especially in the field, which slow down the growth and predation processes and thereby delay prey extinction; and (3) the spatial complexity of the soil environment which creates refuges for the bulb mites.  相似文献   
89.
Adaptive learning of host preference in a herbivorous arthropod   总被引:3,自引:0,他引:3  
Although many publications deal with the effects of experience on behaviour, adaptive learning (i.e. behavioural change with experience resulting in improved reproductive success) is poorly documented. We present direct evidence that learning of host preference improves fitness in the herbivorous mite, Tetranychus urticae . Individual mites from two strains were repeatedly given a choice between two host plants, tomato and cucumber, and then subjected to a performance test on each. For both strains, food experience affected the subsequent choice: individual mites learned to prefer cucumber over tomato. The performance test showed this effect to be adaptive, as the food plant the mites learned to prefer (cucumber) allowed for increased oviposition, survival and development. These findings have important implications for the interpretation of the preference–performance relationship among herbivorous arthropods. The frequently reported absence of such a relationship may be due to experience-dependent preference and/or performance.  相似文献   
90.
Closely related species often show adjacent geographic distributions, albeit with some overlap. This contiguity is thought to result from secondary contact between (spatially separated) diverging groups or from parapatric speciation. Fights between males of closely related species will affect their chance to mate with females of the other species, which in turn may promote their spatial segregation and drive their speciation. Stigmaeopsis miscanthi is a social spider mite that lives in a group within self-woven nests on leaves of Chinese silver grass. This mite shows lethal male–male fight as a means to maintain a harem, and has two forms showing differences in the levels of male–male aggression, diapause intensity in females and the relative length of the first to third legs. The two forms show parapatric distributions. We found that males of one form readily engage themselves in lethal fight with males of the other form, thereby acquiring the nests and gaining access to females of this other form. Males of the aggressive form tend to win the fights with males of the other form. Their first legs are longer which may provide them with a better weapon and which also indicate a larger body width. However, another determinant of who wins the fight is the length of the third legs which can be a proxy for body length. Based on these results, we hypothesize that male killing behavior is one of the mechanisms maintaining parapatry (instead of sympatry) of the two spider mite forms apart from difference in diapause attributes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号