首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   5篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   9篇
  2014年   16篇
  2013年   11篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   10篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1996年   2篇
  1995年   5篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   9篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有228条查询结果,搜索用时 140 毫秒
31.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   
32.
33.
Spider Mites Avoid Plants with Predators   总被引:1,自引:0,他引:1  
While searching for food, prey can use cues associated with their predators to select patches with a reduced predation risk. In many cases, odours indicate the presence of both food and predators. Spider mites are known to use odours to locate food and mates, but also to avoid interspecific competitors. We studied the response of the two-spotted spider mite, Tetranychus urticae, to cues associated with the presence of their predators, the phytoseiid Phytoseiulus persimilis. We found that the spider mites strongly avoid plants defended by this predator, but do not avoid plants with another predatory mite, Neoseiulus californicus. Since P. persimilis is commonly used in the greenhouse where our strain of T. urticae was collected and strains of this pest are known to adapt to greenhouse environments, we hypothesize that there has been selection on the pest to recognize its enemy. We further hypothesize that there has been no selection to recognize N. californicus, as it has not been used against two-spotted spider mites in the greenhouse where our spider mites were collected. We discuss the implications of avoidance of predation by spider mites and non-lethal effects of predators for biological control of this pest in greenhouses.  相似文献   
34.
Adaptation to novel host plants is a much‐studied process in arthropod herbivores, but not in their predators. This is surprising, considering the attention that has been given to the role of predators in host range expansion in herbivores; the enemy‐free space hypothesis suggests that plants may be included in the host range of herbivores because of lower predation and parasitism rates on the novel host plants. This effect can only be important if natural enemies do not follow their prey to the novel host plant, at least not immediately, thus allowing the herbivores to adapt to the novel host plant. Hence, depending on the speed with which natural enemies follow their prey to a new host plant, enemy‐free space on novel host plants may only exist for a limited period. This situation may presently be occurring in a system consisting of the herbivorous moth Thyrinteina arnobia Stoll (Lepidoptera: Geometridae) that attacks various species of Myrtaceae, such as guava (Psidium guajava L.) and jaboticaba (Myrciaria spp.), in Brazil. Since the introduction of eucalyptus (Myrtaceae) species into this country some 100 years ago, the moth has included this plant species in its host range and frequently causes outbreaks, a phenomenon that does not occur on the native host plant species. This suggests that the natural enemies that attack the herbivore on native species are not very effective on the novel host. We tested this hypothesis by studying the searching behaviour of one of the natural enemies, the omnivorous predatory bug Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae). When offered a choice between plants of the two species, the predators (originally collected in eucalyptus plantations) preferred guava to eucalyptus when both plant species were clean, infested with herbivores, or damaged by herbivores but with herbivores removed prior to the experiments. The bugs preferred herbivore‐damaged to clean guava, and showed a slight preference for damaged to clean eucalyptus. These results may explain the lack of impact of predatory arthropods on herbivore populations on eucalyptus and suggests that eucalyptus may offer an enemy‐free space for herbivores.  相似文献   
35.
Plants and herbivores are thought to be engaged in a coevolutionary arms race: rising frequencies of plants with anti-herbivore defences exert pressure on herbivores to resist or circumvent these defences and vice versa. Owing to its frequency-dependent character, the arms race hypothesis predicts that herbivores exhibit genetic variation for traits that determine how they deal with the defences of a given host plant phenotype. Here, we show the existence of distinct variation within a single herbivore species, the spider mite Tetranychus urticae, in traits that lead to resistance or susceptibility to jasmonate (JA)-dependent defences of a host plant but also in traits responsible for induction or repression of JA defences. We characterized three distinct lines of T. urticae that differentially induced JA-related defence genes and metabolites while feeding on tomato plants (Solanum lycopersicum). These lines were also differently affected by induced JA defences. The first line, which induced JA-dependent tomato defences, was susceptible to those defences; the second line also induced JA defences but was resistant to them; and the third, although susceptible to JA defences, repressed induction. We hypothesize that such intraspecific variation is common among herbivores living in environments with a diversity of plants that impose diverse selection pressure.  相似文献   
36.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.47 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB  相似文献   
37.
Given that 14 out of the 25 currently described species of Dermanyssus Dugès, 1834, are morphologically very close to each another, misidentifications may occur and are suspected in at least some records. One of these 14 species is the red fowl mite, D. gallinae (De Geer, 1778), a blood parasite of wild birds, but also a pest in the poultry industry. Using molecular phylogenetic tools we aimed to answer two questions concerning host specificity and synanthropicity: (1) is D. gallinae the only species infesting European layer farms?, and (2) can populations of D. gallinae move from wild to domestic birds and vice versa? Mitochondrial cytochrome oxidase I gene sequences were obtained from 73 Dermanyssus populations collected from nests of wild European birds and from poultry farms and these were analyzed using maximum parsimony and Bayesian inference. Mapping of the observed host range on the obtained topology and correlation with behavioural observations revealed that (1) host range is strongly dependent on some ecological parameters (e.g. nest hygiene, exposure to pesticides and predators), that (2) out of five species under test, synanthropic populations were found only in lineages of D. gallinae, and that (3) at least some haplotypes found in wild birds were very close to those found in association with domestic birds.  相似文献   
38.

Introduction  

Improvement of rheumatoid arthritis (RA) during pregnancy has been causatively associated with increased galactosylation of immunoglobulin G (IgG) N-glycans. Since previous studies were small, did not include the postpartum flare and did not study sialylation, these issues were addressed in the present study.  相似文献   
39.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   
40.
Leaves of plants of several families possess small cavities or tufts of hair where leaf veins bifurcate. These so-called acarodomatia are usually inhabited by predatory and fungivorous mites, which utilize domatia as shelter against adverse conditions or against other predators and cannibals. Plants may benefit from the presence of the mites through reduced densities of herbivores or plant-pathogenic fungi. It has therefore been suggested that domatia mediate a mutualistic interaction between plants and mites. We tested the hypothesis that cavity-like domatia on coffee plants benefit the predatory mite Iphiseiodes zuluagai through providing protection against adverse weather conditions and other predators in three field experiments. We manipulated plant domatia by blocking all on one group of plants, whereas a second group of plants with open natural domatia served as a control. Predatory mite populations were provided with pollen as a food source during part of two experiments. Experiments were done in the dry and rainy season to test the effects of adverse weather conditions and with or without an insect glue barrier on the plant to prevent access of ground-dwelling hyperpredators. High temperatures had a significant negative effect on predator densities in all experiments, whereas rainfall and humidity affected densities in one and two experiments respectively. None of the experiments showed a significant effect of domatia manipulation on mite numbers, or a significant interaction between weather parameters and domatia, suggesting that domatia did not protect against these adverse weather conditions. Nevertheless, predatory mites were frequently observed inside the domatia, suggesting that the mites benefit from using domatia. Perhaps domatia offer protection against hyperpredators, which were rarely observed during our experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号