首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
  87篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2008年   6篇
  2006年   3篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1979年   4篇
  1976年   3篇
  1975年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
41.
Type 1 protein phosphatase (PP1) is a negative regulator of cardiac function. However, studies on the status and regulation of sarcoplasmic reticulum (SR)-associated PP1 activity in failing hearts are limited. We studied PP1 activity and protein and mRNA expression of the catalytic subunit of PP1 (PP1C) and protein levels of PP1-specific inhibitors [inhibitor 1 (Inh-1) and inhibitor 2 (Inh-2)] in the left ventricular (LV) myocardium of 6 dogs with heart failure (HF; LV ejection fraction, 23 +/- 2%) and 6 normal dogs. In failing LV tissue, PP1 activity values (expressed as pmol 32P. min-1. mg of noncollagen protein-1) in the homogenate, crude membranes, cytosol, and purified SR were increased by 52, 54, 55, and 72%, respectively. Trypsin treatment released PP1 but not type 2A protein phosphatase from the SR. In the supernatant of trypsin-treated SR, PP1 activity was approximately 24% higher in failing hearts than in normal control hearts. A similar increase in protein expression of PP1C was observed in the nontrypsinized SR. Heat-denatured phosphorylated SR inhibited PP1 activity by 30%, which suggests the presence of Inh-1 or -2 or both in the SR. With the use of a specific antibody, both Inh-1 and -2 proteins were found in the SR; the former was decreased by 56% in the failing SR, whereas the latter did not change. These results suggest that protein phosphatase activity bound to the SR is increased and is predominantly type 1. Increased SR-associated PP1 activity in failing hearts appears to be due partly to increased expression of PP1C and partly to reduced levels of Inh-1 but not Inh-2 protein. Thus inhibition of PP1 activity in the SR appears to be a potential therapeutic target for improving LV function in failing hearts, because it may lead to increased SR Ca2+ uptake, which is impaired in failing hearts.  相似文献   
42.
In failing hearts, although protein phosphatase type 1 (PP1) activity has increased, information about the regulation and status of PP1 inhibitor-1 (INH-1) and inhibitor-2 (INH-2) is limited. In this study, we examined activity and protein expression of PP1, INH-1 and INH-2 and phosphorylation of sarcoplasmic reticulum (SR) phospholamban (PLB), a substrate of PP1 and modulator of SR Ca2+-ATPase activity, in failing and non-failing hearts. These studies were performed in LV myocardium of seven rats with chronic renal hypertension produced by Goldblatts one-kidney, one-clip procedure and seven age-matched sham-operated normal controls (CTR). Eight weeks after surgery, LV ejection fraction, LV hypertrophy, and pulmonary congestion were determined in all rats. PP1 activity (nmol 32P/min/mg non-collagen protein) was assessed in LV homogenates using 32P-labeled phosphorylase a as substrate. INH-1 and INH-2 activity was determined in the immunoprecipitate of LV homogenates and expressed as percentage inhibitory activity. Using a specific antibody, LV tissue levels of PP1C and calsequestrin (CSQ), a SR calcium binding protein, which is not altered in failing hearts, were also determined. Further, total and phosphorylated PLB, INH-1 and INH-2 protein levels were determined in the LV homogenate and phosphoprotein-enriched fraction, respectively. The band density of each protein was quantified in densitometric units and normalized to CSQ. Results: rats with chronic renal hypertension exhibited significantly reduced LV ejection fraction and increased LV hypertrophy and pulmonary congestion, characteristics of chronic heart failure (CHF). We found that compared to CTR, (1) both INH-1 (10.2 ± 2 versus 57.5 ± 1; p<0.05) and INH-2 activity (3.8 ± 0.4 versus 36.2 ± 4; p<0.05) were reduced, (2) total and phosphorylated PLB amount reduced, (3) protein level of phosphorylated INH-1 was reduced (2.32 ± 0.1 versus 0.73 ± 0.04; p<0.05) whereas that of phosphorylated INH-2 increased (3.05 ± 0.3 versus 1.42 ± 0.1; p<0.05), and (4) PP1 activity was increased approximately 2.6-fold in rats with CHF (1.59 ± 0.05 versus 0.61 ± 0.01; p<0.05) while protein level of the catalytic subunit of PP1 (PP1C) increased 3.85-fold (0.77 ± 0.05 versus 0.20 ± 0.02; p<0.05). These results suggest that reduced inhibitory INH-1 and INH-2 activity, increased PP1C protein level, and reduced PLB phosphorylation are associated with increased PP1 activity in failing hearts. (Mol Cell Biochem 269: 49–57, 2005)  相似文献   
43.
Matrix metalloproteinases (MMPs) contribute to the progression of left ventricular (LV) dysfunction and remodeling associated with heart failure (HF). The present study examined the long-term effects of a selective MMP inhibitor PG-530742 (PG) on the progression of LV dysfunction and remodeling in dogs with HF. Chronic HF [LV ejection fraction (LVEF), 相似文献   
44.
The purpose of this investigation is to describe our preliminary observations of the overall pattern of flow in a mold of the left coronary artery of a pig. Flow in the coronary mold was visualized by the injection of dye into the sinus of Valsalva. Studies were performed during steady flow at rates of 100, 200, 300, 400, and 500 mL/min. Studies were also performed during pulsatile flow, using a pulse duplicator that simulated the magnitude and phasic pattern of coronary flow at rest and during reactive hyperemia. At conditions that simulated rest, mean coronary flow was adjusted to 121 mL/min of which 24 mL/min (20 percent) was systolic. During simulated reactive hyperemia, mean flow was 440 mL/min. Visualization of flow revealed the absence of disturbances of turbulence during both steady and pulsatile flow in the left anterior descending (LAD) and left circumflex (CIRC) coronary arteries throughout the entire range of flow studied. Prominent spiraling of flow occurred during steady and pulsatile flow. Spiraling of flow was not observed in the LAD at rest during pulsatile flow, but developed during simulated reactive hyperemia. Helical flows were observed in the CIRC both during simulated rest and reactive hyperemia. These observations suggest that helical flows may be characteristic features of flow in the left coronary artery; whereas turbulence may not be a feature of this flow field. Whether the spiraling of flow that we observed related to the spiral distribution of early atheroma reported by others, is undetermined.  相似文献   
45.
46.
The alpha isoform of the phosphatidylinositol-3-kinases (PI3Kα) is often mutated, amplified and overexpressed in human tumors. In an effort to develop new inhibitors targeting this enzyme, we carried out a pharmacophore model study based on six PI3Kα-selective compounds. The pharmacophore searching identified three structurally novel inhibitors of PI3Kα and its H1047R mutant. Our biological studies show that two of our hit molecules suppressed the formation of pAKT, a downstream effector of PI3Kα, and induced apoptosis in the HCT116 colon cancer cell line. QPLD-based docking showed that residues Asp933, Glu849, Val851, and Gln859 appeared to be key binding residues for active inhibitors.  相似文献   
47.
48.
Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipid intermediate ceramide. This study assessed cardiac function, expression of PPAR-regulated genes, and cardiomyocyte apoptosis in rats after 8 wk on either a low-fat diet [normal chow control (NC); 10% fat calories] or high-fat diets composed mainly of either saturated (Sat) or unsaturated fatty acids (Unsat) (60% fat calories) (n = 10/group). The Sat group had lower plasma insulin and leptin concentrations compared with the NC or Unsat groups. Cardiac function and mass and body mass were not different. Cardiac triglyceride content was increased in the Sat and Unsat groups compared with NC (P < 0.05); however, ceramide content was higher in the Sat group compared with the Unsat group (2.9 +/- 0.2 vs. 1.4 +/- 0.2 nmol/g; P < 0.05), whereas the NC group was intermediate (2.3 +/- 0.3 nmol/g). The number of apoptotic myocytes, assessed by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling staining, was higher in the Sat group compared with the Unsat group (0.28 +/- 0.05 vs. 0.17 +/- 0.04 apoptotic cells/1,000 nuclei; P < 0.04) and was positively correlated to ceramide content (P < 0.02). Both high-fat diets increased the myocardial mRNA expression of the PPAR-regulated genes encoding uncoupling protein-3 and pyruvate dehydrogenase kinase-4, but only the Sat diet upregulated medium-chain acyl-CoA dehydrogenase. In conclusion, dietary fatty acid composition affects cardiac ceramide accumulation, cardiomyocyte apoptosis, and expression of PPAR-regulated genes independent of cardiac mass or function.  相似文献   
49.
This study was focused on several physico-chemical and biological treatment methods that may affect the reduction of the organic load in olive mill wastewater (OMW). In this study, removal of 95% of the phenolic compounds present in OMW was achieved using sand filtration and subsequent treatment with powdered activated carbon in a batch system. This pretreatment for OMW was found to enhance the anaerobic activity of the sludge in the batch system significantly. The efficiency of organic load removal achieved by the anaerobic treatment of untreated OMW in batch reactors with tap water dilution factors below 1:10, reached approximately 65% chemical oxygen demand (COD) removal. However, in the up-flow sludge anaerobic blanket (UASB) reactor, COD removal efficiency of 80–85% was reached at a hydraulic retention time (HRT) of 5 days with an influent COD concentration of 40 g l−1 and organic loading rate (OLR)=8 g−1 COD l−1 per day.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号