首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   19篇
  国内免费   1篇
  2023年   6篇
  2022年   9篇
  2021年   31篇
  2020年   14篇
  2019年   19篇
  2018年   16篇
  2017年   11篇
  2016年   15篇
  2015年   19篇
  2014年   22篇
  2013年   30篇
  2012年   31篇
  2011年   24篇
  2010年   18篇
  2009年   11篇
  2008年   15篇
  2007年   30篇
  2006年   20篇
  2005年   22篇
  2004年   15篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1997年   1篇
  1994年   2篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1961年   1篇
排序方式: 共有483条查询结果,搜索用时 203 毫秒
11.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   
12.
13.
Molecular Biology Reports - Introns experience lesser selection pressure, thus are liable for higher polymorphism. Intron Length Polymorphic (ILP) markers designed from exon-flanking introns...  相似文献   
14.
A systematic quantum mechanical study of the possible conformations and vibrational spectra of 2-amino 6-bromo 3-formylchromone has been reported. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by Hartree–Fock and density functional theory employing Becke's three-parameter (local, non-local and HF) hybrid exchange functionals with Lee–Yang–Parr co-relational (B3LYP) functionals using 6-311++G(d,p) basis set with complete relaxation in the potential energy surface. The calculated wavenumbers after proper scaling show a very good agreement with the observed values. The electrostatic potential mapped onto isodensity surface has been obtained. The natural bond orbital analysis has been carried out in order to study the intra-molecular bonding, interactions among bonds and delocalisation of unpaired electrons. The highest occupied molecular orbital–lowest unoccupied molecular orbital studies have been conducted in order to determine the way the molecule interacts with other species.  相似文献   
15.
Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.  相似文献   
16.
Climate change is causing range shifts in many marine species, with implications for biodiversity and fisheries. Previous research has mainly focused on how species' ranges will respond to changing ocean temperatures, without accounting for other environmental covariates that could affect future distribution patterns. Here, we integrate habitat suitability modeling approaches, a high‐resolution global climate model projection, and detailed fishery‐independent and ‐dependent faunal datasets from one of the most extensively monitored marine ecosystems—the U.S. Northeast Shelf. We project the responses of 125 species in this region to climate‐driven changes in multiple oceanographic factors (e.g., ocean temperature, salinity, sea surface height) and seabed characteristics (i.e., rugosity and depth). Comparing model outputs based on ocean temperature and seabed characteristics to those that also incorporated salinity and sea surface height (proxies for primary productivity and ocean circulation features), we explored how an emphasis on ocean temperature in projecting species' range shifts can impact assessments of species' climate vulnerability. We found that multifactor habitat suitability models performed better in explaining and predicting species historical distribution patterns than temperature‐based models. We also found that multifactor models provided more concerning assessments of species' future distribution patterns than temperature‐based models, projecting that species' ranges will largely shift northward and become more contracted and fragmented over time. Our results suggest that using ocean temperature as a primary determinant of range shifts can significantly alter projections, masking species' climate vulnerability, and potentially forestalling proactive management.  相似文献   
17.

Introduction

With the recent publication of the negative DANISH trial, the mortality benefit of the implantable cardioverter-defibrillator (ICD) has been put in question in patients with non-ischemic cardiomyopathy (NICM). Because a majority of patients in DANISH receive cardiac resynchronization therapy (CRT) devices, we investigated in the present study the survival of recipients of CRT pacemakers (CRT-P) versus CRT ICDs (CRT-D) in a cohort of older (≥75 years) NICM patients at our institution.

Methods

A total of 135 NICM patients with CRT device were identified (42 with CRT-P and 93 with CRT-D) and were followed to the endpoint of all-cause mortality. Overall survival was compared between the CRT-P and CRT-D groups with adjustment for differences in baseline characteristics.

Results

Over a median follow-up of 46 months from the time of CRT device implantation, there were 54 total deaths (40%): 14 in the CRT-P (33%) and 40 in the CRT-D (43%) groups. Overall, CRT-P recipients had similar unadjusted mortality compared to CRT-D recipients (hazard ratio [HR] 1.04, 95% confidence interval [CI] 0.56–1.93), and this remained unchanged after adjusting for unbalanced covariates (HR 0.95, 95% CI 0.47–1.89) including left ventricular ejection fraction, used of angiotensin converting enzyme inhibitors/angiotensin receptor blockers, and the Charlson comorbidity index.

Conclusion

Our data support that in older NICM patients with CRT devices, the addition of ICD therapy does not improve survival.  相似文献   
18.
As the incidence of small-diameter vascular graft (SDVG) occlusion is considerably high, a great amount of research is focused on constructing a more biocompatible graft. The absence of a biocompatible surface in the lumen of the engineered grafts that can support confluent lining with endothelial cells (ECs) can cause thrombosis and graft failure. Blood clot formation is mainly because of the lack of an integrated endothelium. The most effective approach to combat this problem would be using natural extracellular matrix constituents as a mimic of endothelial basement membrane along with applying anticoagulant agents to provide local antithrombotic effects. In this study, we fabricated aligned and random electrospun poly-L-lactic acid (PLLA) scaffolds containing acetylsalicylic acid (ASA) as the anticoagulation agent and surface coated them with amniotic membrane (AM) lysate. Vascular scaffolds were structurally and mechanically characterized and assessed for cyto- and hemocompatibility and their ability to support endothelial differentiation was examined. All the scaffolds showed appropriate tensile strength as expected for vascular grafts. Lack of cytotoxicity, cellular attachment, growth, and infiltration were proved using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and scanning electron microscopy. The blood compatibilities of different scaffolds examined by in vitro hemolysis and blood coagulation assays elucidated the excellent hemocompatibility of our novel AM-coated ASA-loaded nanofibers. Drug-loaded scaffolds showed a sustained release profile of ASA in 7 days. AM-coated electrospun PLLA fibers showed enhanced cytocompatibility for human umbilical vein ECs, making a confluent endothelial-like lining. In addition, AM lysate-coated ASA-PLLA-aligned scaffold proved to support endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells. Our results together indicated that AM lysate-coated ASA releasing scaffolds have promising potentials for development of a biocompatible SDVG.  相似文献   
19.
In mammalian cells, intracellular sphingosine 1-phosphate (S1P) can stimulate calcium release from intracellular organelles, resulting in the activation of downstream signaling pathways. The budding yeast Saccharomyces cerevisiae expresses enzymes that can synthesize and degrade S1P and related molecules, but their possible role in calcium signaling has not yet been tested. Here we examine the effects of S1P accumulation on calcium signaling using a variety of yeast mutants. Treatment of yeast cells with exogenous sphingosine stimulated Ca(2+) accumulation through two distinct pathways. The first pathway required the Cch1p and Mid1p subunits of a Ca(2+) influx channel, depended upon the function of sphingosine kinases (Lcb4p and Lcb5p), and was inhibited by the functions of S1P lyase (Dpl1p) and the S1P phosphatase (Lcb3p). The biologically inactive stereoisomer of sphingosine did not activate this Ca(2+) influx pathway, suggesting that the active S1P isomer specifically stimulates a calcium-signaling mechanism in yeast. The second Ca(2+) influx pathway stimulated by the addition of sphingosine was not stereospecific, was not dependent on the sphingosine kinases, occurred only at higher doses of added sphingosine, and therefore was likely to be nonspecific. Mutants lacking both S1P lyase and phosphatase (dpl1 lcb3 double mutants) exhibited constitutively high Ca(2+) accumulation and signaling in the absence of added sphingosine, and these effects were dependent on the sphingosine kinases. These results show that endogenous S1P-related molecules can also trigger Ca(2+) accumulation and signaling. Several stimuli previously shown to evoke calcium signaling in wild-type cells were examined in lcb4 lcb5 double mutants. All of the stimuli produced calcium signals independent of sphingosine kinase activity, suggesting that phosphorylated sphingoid bases might serve as messengers of calcium signaling in yeast during an unknown cellular response.  相似文献   
20.
The 120-kDa Na+/Ca2+ exchanger was purified and reconstituted into lipid vesicles. The secondary structure composition of the exchanger was 39% alpha-helices, 20% beta-sheets, 25% beta-turns, and 16% random coils, as analyzed by Fourier transform infrared attenuated total reflection spectroscopy. The secondary structure composition of the COOH-terminal portion of the protein was compatible with a topology model containing 4-6 transmembrane segments. Furthermore, the secondary structure of the NH2-terminal portion of the cytoplasmic loop was analyzed and found to be different from that of the COOH-terminal portion. Ca2+ and/or the exchange inhibitory peptide (XIP) failed to affect the secondary structure of the 120-kDa protein. Tertiary structure modifications induced by Ca2+ and XIP were analyzed by monitoring the hydrogen/deuterium exchange rate for the reconstituted exchanger. In the absence of ligand, 51% of the protein was accessible to solvent. Ca2+ decreased accessibility to 40%, implicating the shielding of at least 103 amino acids. When both Ca2+ and XIP were added, accessibility increased to 66%. No modification was obtained when XIP was added alone. Likewise, in the presence of Ca2+, XIP failed to modify the tertiary structure of the 70-kDa protein, suggesting that XIP acts at the level of the COOH-terminal portion of the intracellular loop. The present data describe, for the first time, conformational changes of the Na+/Ca2+ exchanger induced by Ca2+ and XIP, compatible with an interaction model where regulatory Ca2+ and inhibitory XIP bind to distinct sites, and where XIP binding requires the presence of Ca2+.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号