首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   511篇
  免费   22篇
  国内免费   1篇
  2023年   6篇
  2022年   10篇
  2021年   35篇
  2020年   17篇
  2019年   20篇
  2018年   22篇
  2017年   11篇
  2016年   19篇
  2015年   21篇
  2014年   23篇
  2013年   35篇
  2012年   32篇
  2011年   31篇
  2010年   23篇
  2009年   12篇
  2008年   19篇
  2007年   35篇
  2006年   22篇
  2005年   24篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   9篇
  1999年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   1篇
  1969年   1篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
  1961年   1篇
排序方式: 共有534条查询结果,搜索用时 171 毫秒
71.
The objective of this article is to study the effect of 5-aminolevulinic acid (ALA) and enhanced chlorophyll content, antioxidative enzymes and photosynthesis rate by foliar application of ALA. We evaluated three concentrations (control-distilled water, T1-50 mg l−1, T2-150 mg l−1, T3-250 mg l−1) of ALA and seven cultivars, “Sanchidaye” (Sa-1), “Lichuandasuomian” (Li-1), “Aijiaohuang” (Ai-1), “Qingyou” No. 4 (Qi-1), “Aikang” No. 5 (Ak-1), “Hanxiao” (Ha-1) and “Shulv” (Sl-1). “Ak-1” showed strongest response of POD (peroxidase) enzyme activity (0.4 U g−1 min−1) in 250 mg l−1 ALA solution. The highest CAT (catalase) activity (0.8 U g−1 min−1) after administration of 250 mg l−1 ALA was observed in “Li-1”. Meanwhile, highest (1.42 mg l−1) total chlorophyll content was also observed in “Ak-1”, when leaves were treated in 50 mg l−1 ALA, “Li-1” and “Ai-1” showed strongest response of specific activity of superoxide dismutase (SOD) in 50 mg l−1 and 50 mg l−1 ALA. Two hundred and fifty milligram per milliliter of ALA-treatment significantly improved the net photosynthetic rate.  相似文献   
72.
Understanding the ecological mechanisms that allow a species to transition from an occasional understory component to the dominant type in the forest canopy is essential for predicting future shifts in the distribution of species. We investigated this issue with regard to yew, also because mature yew trees have been reported to inhibit self-regeneration and seedling survival, prompting concerns for the long-term preservation of the species. Our objectives were (a) to quantify spatial patterns of yew (Taxus baccata L.) populations near the southern limit of the species’ ecological distribution, (b) to determine the relationships between yew presence and topographic gradients, and (c) to answer the question of how yew regeneration is affected by such patterns and relationships. We analyzed three extensive yew populations (90–165 ha, including 3–12 thousand established individuals) that mostly occupy the understory of beech forests located in protected areas of the central Apennines (Italy). Overall, the realized niche of yew (either as established trees, saplings, or seedlings) followed the expected bell-shaped curve of a species response to an environmental gradient. Yew was mainly found at 1,000–1,600 m elevation on mesic exposures (north and west) and intermediate slopes (30–60%). Geostatistical analysis revealed that yew occurred in patches, as shown by variogram ranges of 40–110 m for yew tree basal area and regeneration abundance. Yew regeneration over the landscape was directly related to basal area of yew trees. At local scales (~10 m), presence of established trees favored regeneration in relatively less developed stands, whereas high density of mature yews suppressed regeneration. Healthy yew populations in beech forests had a minimum size of 0.5–3 ha. As yew density increased within these patches, regeneration dropped, so that yew conservation cannot be limited to presently occurring populations, despite the longevity and potential for vegetative reproduction of the species. Disturbance from grazing and wildfire was also found to impact yew survival. Long-term existence of yew in the Italian Apennines depends on maintaining and expanding old-growth beech forests that incorporate yew patches, and have a minimum continuous cover equivalent to a relatively undisturbed regime (10–50 ha).  相似文献   
73.
Homologation and cyclization back to the chiral methine of compound 3 yields achiral 4,4-disubstituted piperidine privileged structures (e.g., 8a) useful in the construction of melanocortin 4 receptor (MC4R) ligands. The piperidine nitrogen was replaced with carbon, oxygen, sulfur, and sulfone with minor erosion of binding. The methyl cyclohexane substituent was the most potent while significant affinity was still seen for smaller lipophilic groups such as ethyl.  相似文献   
74.
FPhEP (1, (+/-)-2-exo-(2'-fluoro-3'-phenyl-pyridin-5'-yl)-7-azabicyclo[2.2.1]heptane) belongs to a recently described novel series of 3'-phenyl analogues of epibatidine, which not only possess subnanomolar affinity and high selectivity for brain alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs), but also were reported as functional antagonists of low toxicity (up to 15 mg/kg in mice). FPhEP (1, K(i) of 0.24 nM against [(3)H]epibatidine) as reference as well as the corresponding N-Boc-protected chloro- and bromo derivatives (3a,b) as precursors for labelling with fluorine-18 were synthesized in eight and nine steps, respectively, from commercially available N-Boc-pyrrole (overall yields=17% for 1, 9% for 3a and 8% for 3b). FPhEP (1) was labelled with fluorine-18 using the following two-step radiochemical process: (1) no-carrier-added nucleophilic heteroaromatic ortho-radiofluorination from the corresponding N-Boc-protected chloro- or bromo derivatives (3 a,b-1mg) and the activated K[(18)F]F-Kryptofix(222) complex in DMSO using microwave activation at 250 W for 1.5 min, followed by (2) quantitative TFA-induced removal of the N-Boc-protective group. Radiochemically pure (>99%) [(18)F]FPhEP ([(18)F]-1, 2.22-3.33 GBq, 66-137 GBq/micromol) was obtained after semi-preparative HPLC (Symmetry C18, eluent aq 0.05 M NaH(2)PO(4)/CH(3)CN, 80:20 (v:v)) in 75-80 min starting from a 18.5 GBq aliquot of a cyclotron-produced [(18)F]fluoride production batch (10-20% nondecay-corrected overall yield). In vitro binding studies on rat whole-brain membranes demonstrated a subnanomolar affinity (K(D) 660 pM) of [(18)F]FPhEP ([(18)F]-1) for nAChRs. In vitro autoradiographic studies also showed a good contrast between nAChR-rich and -poor regions with a low non-specific binding. Comparison of in vivo Positron Emission Tomography (PET) kinetics of [(18)F]FPhEP ([(18)F]-1) and [(18)F]F-A-85380 in baboons demonstrated faster brain kinetics of the former compound (with a peak uptake at 20 min post injection only). Taken together, the preliminary data obtained confirm that [(18)F]FPhEP ([(18)F]-1) has potential for in vivo imaging nAChRs in the brain with PET.  相似文献   
75.
LBT-999 (8-((E)-4-fluoro-but-2-enyl)-3beta-p-tolyl-8-aza-bicyclo[3.2.1]octane-2beta-carboxylic acid methyl ester), a cocaine derivative belonging to a new generation of highly selective dopamine transporter (DAT) ligands, and its corresponding carboxylic acid derivative, the latter used as precursor for labelling both with tritium and the positron-emitter carbon-11 (half-life: 20.38 min), were synthesized from (R)-cocaine. [(3)H]LBT-999 (>99% radiochemically pure, specific radioactivity of 3.1 TBq/mmol) was prepared from [(3)H]methyl iodide, allowing its in vitro pharmacological evaluation (K(D): 9 nM for DAT and IC(50) > 1000 nM for SERT and NET). Routine production batches of 4.5-9.0 GBq of iv injectable solutions of [(11)C]LBT-999 (with specific radioactivities ranging from 30 to 45 GBq/mumol) were prepared in 25-30 min (HPLC purification and formulation included) using the efficient methylation reagent [(11)C]methyl triflate. The preliminary in vivo pharmacological evaluation of [(11)C]LBT-999, using both biodistributions in rats and brain imaging in monkeys with positron emission tomography (PET), clearly illustrates that this ligand is an excellent candidate for quantification with PET of DAT in humans.  相似文献   
76.
Macroautophagy/autophagy defects have been identified as critical factors underlying the pathogenesis of neurodegenerative diseases. The roles of the bioactive signaling lipid sphingosine-1-phosphate (S1P) and its catabolic enzyme SGPL1/SPL (sphingosine phosphate lyase 1) in autophagy are increasingly recognized. Here we provide in vitro and in vivo evidence for a previously unidentified route through which SGPL1 modulates autophagy in neurons. SGPL1 cleaves S1P into ethanolamine phosphate, which is directed toward the synthesis of phosphatidylethanolamine (PE) that anchors LC3-I to phagophore membranes in the form of LC3-II. In the brains of SGPL1fl/fl/Nes mice with developmental neural specific SGPL1 ablation, we observed significantly reduced PE levels. Accordingly, alterations in basal and stimulated autophagy involving decreased conversion of LC3-I to LC3-II and increased BECN1/Beclin-1 and SQSTM1/p62 levels were apparent. Alterations were also noticed in downstream events of the autophagic-lysosomal pathway such as increased levels of lysosomal markers and aggregate-prone proteins such as APP (amyloid β [A4] precursor protein) and SNCA/α-synuclein. In vivo profound deficits in cognitive skills were observed. Genetic and pharmacological inhibition of SGPL1 in cultured neurons promoted these alterations, whereas addition of PE was sufficient to restore LC3-I to LC3-II conversion, and control levels of SQSTM1, APP and SNCA. Electron and immunofluorescence microscopy showed accumulation of unclosed phagophore-like structures, reduction of autolysosomes and altered distribution of LC3 in SGPL1fl/fl/Nes brains. Experiments using EGFP-mRFP-LC3 provided further support for blockage of the autophagic flux at initiation stages upon SGPL1 deficiency due to PE paucity. These results emphasize a formerly overlooked direct role of SGPL1 in neuronal autophagy and assume significance in the context that autophagy modulators hold an enormous therapeutic potential in the treatment of neurodegenerative diseases.  相似文献   
77.
A heterologous transformation system was developed for V. lecanii based on the complementation of a nitrate reductase mutant. Nitrate reductase mutants were obtained by resistance to chlorate in a rate of 23.24% when compared to other mutations that lead to the chlorate resistance. Mutant no. 01 and 04 was chosen for the transformation experiments. Plasmid pBT was used as transformation vector containing the Aspergillus nidulans nitrate reductase gene. A frequency of approximately 3 transformants/μg DNA was obtained using the circular vector pBT. The establishment of a transformation system for V. lecanii is fundamental for genetic manipulation of this microorganism.  相似文献   
78.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P? and S1P? receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.  相似文献   
79.
To study the effect of an exogenous cytokinin application on safflower yield, an experiment was conducted in 2012–2013. Two cultivars of safflower (Goldasht and Zendehrood) and five concentrations of 6-benzylaminopurine (BAP) (0, 25, 50, 75, and 100 μM) were applied at the flowering stage. Results indicated that the application of 75 μM of BAP showed increased seed and oil yield by 17.54 and 18.29 % over the control, respectively. The increase in seed yield by application of BAP was attributed to the increase in characters like number of heads per plant, number of seeds per head, and 1,000 seed weight. Applying of BAP increased oil content compared with the control. To determine the concentration of cytokinin which has the highest performance for increasing seed yield, regression analysis were estimated showing that in the Zendehrood cultivar, the application of 43 μM of BAP produced the highest seed yield, and in the Goldasht cultivar the application of 73 μM of BAP during flowering produced the highest seed yield.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号