首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   479篇
  免费   43篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   7篇
  2018年   17篇
  2017年   9篇
  2016年   18篇
  2015年   25篇
  2014年   14篇
  2013年   21篇
  2012年   31篇
  2011年   17篇
  2010年   21篇
  2009年   28篇
  2008年   24篇
  2007年   14篇
  2006年   16篇
  2005年   17篇
  2004年   16篇
  2003年   12篇
  2002年   13篇
  2001年   12篇
  2000年   5篇
  1999年   11篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   14篇
  1987年   9篇
  1986年   15篇
  1985年   5篇
  1984年   9篇
  1983年   7篇
  1982年   4篇
  1977年   3篇
  1976年   5篇
  1975年   9篇
  1974年   5篇
  1973年   2篇
  1972年   3篇
  1969年   2篇
  1968年   5篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
151.
152.

Background

The principal oxidative-stress defense in the human parasite Trypanosoma cruzi is the tryparedoxin-dependent peroxide detoxification pathway, constituted by trypanothione reductase (TryR), tryparedoxin (TXN), tryparedoxin peroxidase (TXNPx) and tryparedoxin-dependent glutathione peroxidase A (GPxA). Here, Metabolic Control Analysis (MCA) was applied to quantitatively prioritize drug target(s) within the pathway by identifying its flux-controlling enzymes.

Methods

The recombinant enzymes were kinetically characterized at physiological pH/temperature. Further, the pathway was in vitro reconstituted using enzyme activity ratios and fluxes similar to those observed in the parasites; then, enzyme and substrate titrations were performed to determine their degree of control on flux. Also, kinetic characterization of the whole pathway was performed.

Results

Analyses of the kinetic properties indicated that TXN is the less efficient pathway enzyme derived from its high Kmapp for trypanothione and low Vmax values within the cell. MCA established that the TXN–TXNPx and TXN–GPxA redox pairs controlled by 90–100% the pathway flux, whereas 10% control was attained by TryR. The Kmapp values of the complete pathway for substrates suggested that the pathway flux was determined by the peroxide availability, whereas at high peroxide concentrations, flux may be limited by NADPH.

Conclusion

These quantitative kinetic and metabolic analyses pointed out to TXN as a convenient drug target due to its low catalytic efficiency, high control on the flux of peroxide detoxification and role as provider of reducing equivalents to the two main peroxidases in the parasite.

General Significance

MCA studies provide rational and quantitative criteria to select enzymes for drug-target development.  相似文献   
153.

Introduction

Autoantibodies and clinical manifestations in polymyositis/dermatomyositis (PM/DM) are affected by both genetic and environmental factors. The high prevalence of DM and anti-Mi-2 in Central America is thought to be associated with the high UV index of the area. The prevalences of autoantibodies and the clinical manifestations of PM/DM were evaluated comparing two cohorts in Mexico.

Methods

Ninety-five Mexican patients with PM/DM (66 DM, 29 PM; 67 Mexico City, 28 Guadalajara) were studied. Autoantibodies were characterized by immunoprecipitation using 35S-methionine labeled K562 cell extract. Clinical information was obtained from medical records.

Results

DM represented 69% of PM/DM and anti-Mi-2 was the most common autoantibody (35%), followed by anti-p155/140 (11%); however, anti-Jo-1 was only 4%. The autoantibody profile in adult-onset DM in Mexico City versus Guadalajara showed striking differences: anti-Mi-2 was 59% versus 12% (P = 0.0012) whereas anti-p155/140 was 9% versus 35% (P = 0.02), respectively. A strong association of anti-Mi-2 with DM was confirmed and when clinical features of anti-Mi-2 (+) DM (n = 30) versus anti-Mi-2 (-) DM (n = 36) were compared, the shawl sign (86% versus 64%, P < 0.05) was more common in the anti-Mi-2 (+) group (P = 0.0001). Levels of creatine phosphokinase (CPK) were higher in those who were anti-Mi-2 (+) but they responded well to therapy.

Conclusions

Anti-Mi-2 has a high prevalence in Mexican DM and is associated with the shawl sign and high CPK. The prevalence of anti-Mi-2 and anti-p155/140 was significantly different in Mexico City versus Guadalajara, which have a similar UV index. This suggests roles of factors other than UV in anti-Mi-2 antibody production.  相似文献   
154.
155.
156.
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.  相似文献   
157.

Background

While the presence of the chitinase-like molecule YKL40 has been reported in COPD and asthma, its relevance to inflammatory processes elicited by cigarette smoke and common environmental allergens, such as house dust mite (HDM), is not well understood. The objective of the current study was to assess expression and function of BRP-39, the murine equivalent of YKL40 in a murine model of cigarette smoke-induced inflammation and contrast expression and function to a model of HDM-induced allergic airway inflammation.

Methods

CD1, C57BL/6, and BALB/c mice were room air- or cigarette smoke-exposed for 4 days in a whole-body exposure system. In separate experiments, BALB/c mice were challenged with HDM extract once a day for 10 days. BRP-39 was assessed by ELISA and immunohistochemistry. IL-13, IL-1R1, IL-18, and BRP-39 knock out (KO) mice were utilized to assess the mechanism and relevance of BRP-39 in cigarette smoke- and HDM-induced airway inflammation.

Results

Cigarette smoke exposure elicited a robust induction of BRP-39 but not the catalytically active chitinase, AMCase, in lung epithelial cells and alveolar macrophages of all mouse strains tested. Both BRP-39 and AMCase were increased in lung tissue after HDM exposure. Examining smoke-exposed IL-1R1, IL-18, and IL-13 deficient mice, BRP-39 induction was found to be IL-1 and not IL-18 or IL-13 dependent, while induction of BRP-39 by HDM was independent of IL-1 and IL-13. Despite the importance of BRP-39 in cellular inflammation in HDM-induced airway inflammation, BRP-39 was found to be redundant for cigarette smoke-induced airway inflammation and the adjuvant properties of cigarette smoke.

Conclusions

These data highlight the contrast between the importance of BRP-39 in HDM- and cigarette smoke-induced inflammation. While functionally important in HDM-induced inflammation, BRP-39 is a biomarker of cigarette smoke induced inflammation which is the byproduct of an IL-1 inflammatory pathway.  相似文献   
158.
159.
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.  相似文献   
160.
Most cancer cells exhibit an accelerated glycolysis rate compared to normal cells. This metabolic change is associated with the over-expression of all the pathway enzymes and transporters (as induced by HIF-1α and other oncogenes), and with the expression of hexokinase (HK) and phosphofructokinase type 1 (PFK-1) isoenzymes with different regulatory properties. Hence, a control distribution of tumor glycolysis, modified from that observed in normal cells, can be expected. To define the control distribution and to understand the underlying control mechanisms, kinetic models of glycolysis of rodent AS-30D hepatoma and human cervix HeLa cells were constructed with experimental data obtained here for each pathway step (enzyme kinetics; steady-state pathway metabolite concentrations and fluxes). The models predicted with high accuracy the fluxes and metabolite concentrations found in living cancer cells under physiological O(2) and glucose concentrations as well as under hypoxic and hypoglycemic conditions prevailing during tumor progression. The results indicated that HK≥HPI>GLUT in AS-30D whereas glycogen degradation≥GLUT>HK in HeLa were the main flux- and ATP concentration-control steps. Modeling also revealed that, in order to diminish the glycolytic flux or the ATP concentration by 50%, it was required to decrease GLUT or HK or HPI by 76% (AS-30D), and GLUT or glycogen degradation by 87-99% (HeLa), or decreasing simultaneously the mentioned steps by 47%. Thus, these proteins are proposed to be the foremost therapeutic targets because their simultaneous inhibition will have greater antagonistic effects on tumor energy metabolism than inhibition of all other glycolytic, non-controlling, enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号