全文获取类型
收费全文 | 961篇 |
免费 | 77篇 |
国内免费 | 1篇 |
专业分类
1039篇 |
出版年
2023年 | 3篇 |
2022年 | 8篇 |
2021年 | 17篇 |
2020年 | 7篇 |
2019年 | 12篇 |
2018年 | 9篇 |
2017年 | 10篇 |
2016年 | 25篇 |
2015年 | 48篇 |
2014年 | 46篇 |
2013年 | 55篇 |
2012年 | 77篇 |
2011年 | 95篇 |
2010年 | 31篇 |
2009年 | 35篇 |
2008年 | 40篇 |
2007年 | 46篇 |
2006年 | 52篇 |
2005年 | 52篇 |
2004年 | 31篇 |
2003年 | 34篇 |
2002年 | 28篇 |
2001年 | 21篇 |
2000年 | 22篇 |
1999年 | 23篇 |
1998年 | 6篇 |
1997年 | 12篇 |
1996年 | 9篇 |
1995年 | 11篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 14篇 |
1991年 | 17篇 |
1990年 | 23篇 |
1989年 | 7篇 |
1988年 | 17篇 |
1987年 | 12篇 |
1986年 | 6篇 |
1985年 | 7篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1982年 | 7篇 |
1981年 | 3篇 |
1980年 | 3篇 |
1979年 | 7篇 |
1978年 | 3篇 |
1975年 | 3篇 |
1974年 | 4篇 |
1973年 | 3篇 |
1972年 | 3篇 |
排序方式: 共有1039条查询结果,搜索用时 7 毫秒
31.
The utility of shallow water bodies in urban environments is frequently compromised either by dense beds of submerged plants
or cyanobacterial blooms associated with nutrient enrichment. Although submerged plants are often harvested to facilitate
recreational uses, this activity may alter the phytoplankton community, which in turn, also may restrict the use of the lake.
We tested whether (i) plant harvesting reduced the abundance of flagellate algae and increased the abundance of cyanobacteria,
and (ii) whether increasing levels of nutrient enrichment caused shifts in the dominance of heterocytous cyanobacteria, non-heterocytous
cyanobacteria and Chlorophyta, in a shallow urban lake in Southern Australia as has been observed for shallow Danish lakes
in previous studies. These predictions were tested with large (3000 l), replicated mesocosms in a warm, highly productive,
shallow lake densely colonised by the submerged angiosperm, Vallisnaria americana Michaux. The heterokont algae, Chlorophyta, Cyanobacteria and Cryptophyta were the most numerous algal divisions in the lake.
The Euglenophyta, although uncommon in early summer, became more abundant towards the end of summer. The Dinophyta and Charophyta
were rare. The abundance of the heterokont algae and Euglenophyta was significantly reduced by plant harvesting even after
plants had partially re-established 18 weeks after initial harvesting. The decline in the Euglenophyta in response to plant
harvesting is consistent with earlier findings, that the relative abundance of flagellate algae tends to be greater in the
presence of submerged plants. Contrary to our prediction, we found that the Cyanobacteria did not increase in response to
plant harvesting, however the response may be altered under higher nutrient levels. Algal responses to nutrient enrichment
in the presence of dense V. americana plants generally followed the patterns observed in shallow Danish lakes despite the large differences in climatic conditions.
Both studies found that the abundance of heterocytous cyanobacteria declined at higher levels of nutrient enrichment, whereas
non-heterocytous cyanobacteria and chlorophytes increased. 相似文献
32.
Yitian Cai Boon Heng Dennis Teo Joo Guan Yeo Jinhua Lu 《The Journal of biological chemistry》2015,290(37):22570-22580
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. 相似文献
33.
This study attempted to develop a 'less meiotically competent' murine model for oocyte in vitro maturation (IVM), which could more readily be extrapolated to human clinical assisted reproduction. Oocyte meiotic competence was drastically reduced upon shortening the standard duration of in vivo gonadotrophin stimulation from 48 h to 24 h, and by selecting only naked or partially naked germinal vesicle oocytes, instead of fully cumulus enclosed oocyte complexes. With such a less meiotically competent model, only porcine granulosa coculture significantly enhanced the oocyte maturation rate in vitro, whereas no significant enhancement was observed with macaque and murine granulosa coculture. Increased serum concentrations and the supplementation of gonadotrophins, follicular fluid and extracellular matrix gel within the culture medium did not enhance IVM under either cell-free or coculture conditions. Culture medium conditioned by porcine granulosa also enhanced the maturation rate, and this beneficial effect was not diminished upon freeze-thawing. Enhanced IVM in the presence of porcine granulosa coculture did not, however, translate into improved developmental competence, as assessed by in vitro fertilization and embryo culture to the blastocyst stage. 相似文献
34.
Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox 总被引:1,自引:0,他引:1
Siegfried E. Vlaeminck Akihiko Terada Barth F. Smets Haydée De Clippeleir Thomas Schaubroeck Selin Bolca Lien Demeestere Jan Mast Nico Boon Marta Carballa Willy Verstraete 《Applied and environmental microbiology》2010,76(3):900-909
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing.In the last few years, autotrophic nitrogen removal via partial nitritation and anoxic ammonium oxidation (anammox) has evolved from lab- to full-scale treatment of nitrogenous wastewaters with a low biodegradable organic compound content, and this evolution has been driven mainly by a significant decrease in the operational costs compared to the costs of conventional nitrification and heterotrophic denitrification (11, 23). Oxygen-limited autotrophic nitrification and denitrification (OLAND) is one of the autotrophic processes used and is a one-stage procedure; i.e., partial nitritation and anammox occur in the same reactor (30). The “functional” autotrophic microorganisms in OLAND include aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB). With oxygen, AerAOB oxidize ammonium to nitrite (nitritation), and with the nitrite AnAOB oxidize the residual ammonium to form dinitrogen gas and some nitrate (anammox). Additional aerobic nitrite oxidation to nitrate (nitratation) by nitrite-oxidizing bacteria (NOB) lowers the nitrogen removal efficiency, but it can, for instance, be prevented at low dissolved oxygen (DO) levels because the oxygen affinity of AerAOB is higher than that of NOB (16). Reactor configurations for the OLAND process can be based on suspended biomass growing in aggregates, like that in a sequencing batch reactor (SBR) (37) or a gas lift or upflow reactor (32). For suspended-growth systems there are two important challenges: biomass retention and equilibrated microbial activities.High biomass retention efficiency is a prerequisite in anammox technologies because of the slow growth of AnAOB (33). In suspended biomass systems, settling properties determine the retention of biomass and are related to the microbial aggregate morphology (floc or granule) and size. Granules can be defined as compact and dense aggregates with an approximately spherical external appearance that do not coagulate under decreased hydrodynamic shear conditions and settle significantly faster than flocs (18). Toh and coworkers calculated a lower sludge volume index for aerobic granules than for aerobic flocs and also showed that there was an increase in the settling velocity with increasing granule size (35). Hence, in terms of physical properties, large granules are preferable for suspended-growth applications.OLAND aggregate size not only influences settling properties but also affects the proportion of microbial nitrite production and consumption; lower AerAOB activity and higher AnAOB activity were observed with larger aggregates (25, 37). Theoretically, a microbial aggregate with equal nitrite production and nitrite consumption can remove ammonium autonomously, because of its independence from other aggregates for acquisition and conversion of nitrite. Hence, with an increasing aggregate size and thus with a decreasing ratio of nitrite production to nitrite consumption, three functional categories of aggregates can be distinguished: nitrite sources, autonomous nitrogen removers, and nitrite sinks. Because minimal nitrite accumulation is one of the prerequisites for high nitrogen removal efficiency in OLAND reactors, the presence of excess small aggregates is undesirable (9, 37).Although large granular aggregates are desirable for biomass retention and activity balance, so far no formation mechanisms have been proposed for OLAND granules, in contrast to the well-studied anaerobic (13) and aerobic (1) granules. In order to determine general and environment-specific determinants for aggregate size and architecture, three suspended-growth OLAND reactors with different inoculation and operation (mixing and aeration) parameters were selected, and these reactors were designated reactors A, B, and C (Table (Table1).1). The first objective of this study was to gain more insight into the relationship between OLAND aggregate size, AerAOB and AnAOB abundance, and the activity balance. The second objective was to propose pathways for aggregation and granulation by relating (dis)similarities in aggregate size distribution, morphology, and architecture to differences in reactor inoculation and operation.
Open in a separate windowaAggregates settling at a rate higher than the minimum settling velocity (MSV) were not washed out of the sequencing batch reactors (SBR). The MSV was calculated by dividing the vertical distance of the water volume decanted per cycle by the settling time.bSupernatant from a municipal sludge digestor.cEffluent from a potato-processing factory pretreated with anaerobic digestion and struvite precipitation.dObtained at the end of a reactor start-up study (37).eObtained at the end of a reactor start-up study (9). 相似文献
TABLE 1.
Overview of the three OLAND reactor systems from which suspended biomass samples were obtainedParameter | Reactor Aa | Reactor Ba | Reactor C |
---|---|---|---|
Reactor type | SBR | SBR | Upflow reactor |
Vol (m3) | 0.002 | 4.1 | 600 |
Reactor ht/diam ratio | 0.9 | 4 | 0.5-0.8 |
Inoculum | OLAND biofilm | Activated sludge | Anammox granules |
Wastewater | Synthetic | Domesticb | Industrialc |
Influent ammonium concn (mg N liter−1) | 230-330 | 800 | 250-350 |
Nitrogen removal rate (g N liter−1 day −1) | 0.45,d 1.1e | 0.65 | 1.3 |
Effluent nitrite concn (mg N liter−1) | 30-40d | 5-10 | 5-10 |
Influent COD/effluent COD (mg liter−1) | 0/0 | 240/220 | 200/150 |
pH | 7.4-7.8 | 7.4-7.6 | 8.0 |
Temp (°C) | 35 | 25 | 30-35 |
DO level (mg O2 liter−1) | 0.4-1.1 | 0.5-1.0 | 2.0-3.0 |
Mixing mechanism | Magnetic stirrer | Bladed impeller | Aeration |
Biomass retention mechanism | MSV, >0.73 m h−1 | MSV, >1.4 m h−1 | Three-phase separator |
Sampling time (months after start-up) | 2d | 8 | 30 |
35.
The clinicopathological and gene expression patterns associated with ulceration of primary melanoma 下载免费PDF全文
Rosalyn Jewell Faye Elliott Jonathan Laye Jérémie Nsengimana John Davies Christy Walker Caroline Conway Angana Mitra Mark Harland Martin G. Cook Andy Boon Sarah Storr Sabreena Safuan Stewart G. Martin Karin Jirström Håkan Olsson Christian Ingvar Martin Lauss Tim Bishop Göran Jönsson Julia Newton‐Bishop 《Pigment cell & melanoma research》2015,28(1):94-104
Ulceration of primary melanomas is associated with poor prognosis yet is reported to predict benefit from adjuvant interferon. To better understand the biological processes involved, clinicopathological factors associated with ulceration were determined in 1804 patients. From this cohort, 348 primary tumor blocks were sampled to generate gene expression data using a 502‐gene cancer panel and 195 blocks were used for immunohistochemistry to detect macrophage infiltration and vessel density. Gene expression results were validated using a whole genome array in two independent sample sets. Ulceration of primary melanomas was associated with more proliferative tumors, tumor vessel invasion, and increased microvessel density. Infiltration of tumors with greater number of macrophages and gene expression pathways associated with wound healing and up‐regulation of pro‐inflammatory cytokines suggests that ulceration is associated with tumor‐related inflammation. The relative benefit from interferon reported in patients with ulcerated tumors may reflect modification of signaling pathways involved in inflammation. 相似文献
36.
Lynn Meurs Moustapha Mbow Nele Boon Frederik van den Broeck Kim Vereecken Tandakha Ndiaye Dièye Emmanuel Abatih Tine Huyse Souleymane Mboup Katja Polman 《PLoS neglected tropical diseases》2013,7(12)
Background
Schistosoma mansoni and S. haematobium are co-endemic in many areas in Africa. Yet, little is known about the micro-geographical distribution of these two infections or associated disease within such foci. Such knowledge could give important insights into the drivers of infection and disease and as such better tailor schistosomiasis control and elimination efforts.Methodology
In a co-endemic farming community in northern Senegal (346 children (0–19 y) and 253 adults (20–85 y); n = 599 in total), we studied the spatial distribution of S. mansoni and S. haematobium single and mixed infections (by microscopy), S. mansoni-specific hepatic fibrosis, S. haematobium-specific urinary tract morbidity (by ultrasound) and water contact behavior (by questionnaire). The Kulldorff''s scan statistic was used to detect spatial clusters of infection and morbidity, adjusted for the spatial distribution of gender and age.Principal Findings
Schistosoma mansoni and S. haematobium infection densities clustered in different sections of the community (p = 0.002 and p = 0.023, respectively), possibly related to heterogeneities in the use of different water contact sites. While the distribution of urinary tract morbidity was homogeneous, a strong geospatial cluster was found for severe hepatic fibrosis (p = 0.001). Particularly those people living adjacent to the most frequently used water contact site were more at risk for more advanced morbidity (RR = 6.3; p = 0.043).Conclusions/Significance
Schistosoma infection and associated disease showed important micro-geographical heterogeneities with divergent patterns for S. mansoni and S. haematobium in this Senegalese community. Further in depth investigations are needed to confirm and explain our observations. The present study indicates that local geospatial patterns should be taken into account in both research and control of schistosomiasis. The observed extreme focality of schistosomiasis even at community level, suggests that current strategies may not suffice to move from morbidity control to elimination of schistosomiasis, and calls for less uniform measures at a finer scale. 相似文献37.
Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations 总被引:6,自引:0,他引:6 下载免费PDF全文
Eerola I Boon LM Mulliken JB Burrows PE Dompmartin A Watanabe S Vanwijck R Vikkula M 《American journal of human genetics》2003,73(6):1240-1249
Capillary malformation (CM), or "port-wine stain," is a common cutaneous vascular anomaly that initially appears as a red macular stain that darkens over years. CM also occurs in several combined vascular anomalies that exhibit hypertrophy, such as Sturge-Weber syndrome, Klippel-Trenaunay syndrome, and Parkes Weber syndrome. Occasional familial segregation of CM suggests that there is genetic susceptibility, underscored by the identification of a large locus, CMC1, on chromosome 5q. We used genetic fine mapping with polymorphic markers to reduce the size of the CMC1 locus. A positional candidate gene, RASA1, encoding p120-RasGAP, was screened for mutations in 17 families. Heterozygous inactivating RASA1 mutations were detected in six families manifesting atypical CMs that were multiple, small, round to oval in shape, and pinkish red in color. In addition to CM, either arteriovenous malformation, arteriovenous fistula, or Parkes Weber syndrome was documented in all the families with a mutation. We named this newly identified association caused by RASA1 mutations "CM-AVM," for capillary malformation-arteriovenous malformation. The phenotypic variability can be explained by the involvement of p120-RasGAP in signaling for various growth factor receptors that control proliferation, migration, and survival of several cell types, including vascular endothelial cells. 相似文献
38.
Mario Gimona Maria Felice Brizzi Andre Boon Hwa Choo Massimo Dominici Sean M. Davidson Johannes Grillari Dirk M. Hermann Andrew F. Hill Dominique de Kleijn Ruenn Chai Lai Charles P. Lai Rebecca Lim Marta Monguió-Tortajada Maurizio Muraca Takahiro Ochiya Luis A. Ortiz Wei Seong Toh Yong Weon Yi Sai Kiang Lim 《Cytotherapy》2021,23(5):373-380
Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation. 相似文献
39.
Immunogenic tumor cell variant P35 was obtained by mutagen treatment of mouse mastocytoma P815. It express a potent new antigen recognized by syngeneic cytolytic T lymphocytes (CTL). This antigen is the result of a point mutation in a gene that is expressed by most healthy cells. A decapeptide encoded by the region spanning the mutation sensitized P815 cells to the relevant CTL, whereas the homologous decapeptide corresponding to the normal sequence did not. Only the mutant decapeptide was capable of enhancing the expression of the Dd-presenting molecule at the cell surface, indicating that the mutation generates a motif which enables the antigenic peptide to bind to Dd.
Correspondence to: T. Boon. 相似文献
40.
Continuous culture fermentations of Escherichia coli W3110 have been carried out at controlled dissolved oxygen levels of 40% and 10% of saturation. Satisfactory and reproducible results were obtained. Agitation speeds of 400 and 1200 rpm at an aeration rate of 1 vvm have been used as well as an aeration rate of 3 vvm at 400 rpm. The upper levels of these variables represent much higher agitation and aeration intensities than those normally used in practical fermentations. The fermentations were monitored by mass spectrometry and optical density, and cell samples were studied by flow cytometry, SEM, and TEM. Protocols were developed so the state of both cell membranes and cell size could be measured by flow cytometry. Under all the conditions of agitation and aeration, flow cytometric analysis indicated that both cell membranes were intact and that a cytoplasmic membrane potential existed; also the cell size did not change, results confirmed by SEM and TEM. There were no detectable changes in off-gas analysis or optical density during the continuous fermentation nor in the cell structure as revealed by SEM or TEM, except at the highest agitation intensity. Under the latter conditions, after 7 h, the outer polysaccharide layer on the cell was stripped away. It is concluded that any changes in biological performance of this E. coli cell line due to variations in agitation or aeration intensity or scale of operation cannot be attributed to fluid dynamic stresses associated with the turbulence generated by impellers or with bursting bubbles. 相似文献