全文获取类型
收费全文 | 171篇 |
免费 | 17篇 |
专业分类
188篇 |
出版年
2021年 | 5篇 |
2019年 | 2篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 6篇 |
2013年 | 6篇 |
2012年 | 10篇 |
2011年 | 10篇 |
2010年 | 7篇 |
2008年 | 9篇 |
2007年 | 12篇 |
2006年 | 8篇 |
2005年 | 6篇 |
2004年 | 6篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 4篇 |
1999年 | 7篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1982年 | 9篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 3篇 |
1976年 | 5篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1972年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1966年 | 1篇 |
1942年 | 1篇 |
1937年 | 1篇 |
1918年 | 1篇 |
排序方式: 共有188条查询结果,搜索用时 15 毫秒
11.
12.
To bypass a diverse range of fork stalling impediments encountered during genome replication, cells possess a variety of DNA damage tolerance (DDT) mechanisms including translesion synthesis, template switching, and fork reversal. These pathways function to bypass obstacles and allow efficient DNA synthesis to be maintained. In addition, lagging strand obstacles can also be circumvented by downstream priming during Okazaki fragment generation, leaving gaps to be filled post-replication. Whether repriming occurs on the leading strand has been intensely debated over the past half-century. Early studies indicated that both DNA strands were synthesised discontinuously. Although later studies suggested that leading strand synthesis was continuous, leading to the preferred semi-discontinuous replication model. However, more recently it has been established that replicative primases can perform leading strand repriming in prokaryotes. An analogous fork restart mechanism has also been identified in most eukaryotes, which possess a specialist primase called PrimPol that conducts repriming downstream of stalling lesions and structures. PrimPol also plays a more general role in maintaining efficient fork progression. Here, we review and discuss the historical evidence and recent discoveries that substantiate repriming as an intrinsic replication restart pathway for maintaining efficient genome duplication across all domains of life. 相似文献
13.
14.
15.
Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumors 总被引:10,自引:0,他引:10
Teague RM Sather BD Sacks JA Huang MZ Dossett ML Morimoto J Tan X Sutton SE Cooke MP Ohlén C Greenberg PD 《Nature medicine》2006,12(3):335-341
CD8+ T cells can mediate eradication of established tumors, and strategies to amplify tumor-reactive T-cell numbers by immunization or ex vivo expansion followed by adoptive transfer are currently being explored in individuals with cancer. Generating effective CD8+ T cell-mediated responses to tumors is often impeded by T-cell tolerance to relevant tumor antigens, as most of these antigens are also expressed in normal tissues. We examined whether such tolerant T cells could be rescued and functionally restored for use in therapy of established tumors. We used a transgenic T-cell receptor (TCR) mouse model in which peripheral CD8+ T cells specific for a candidate tumor antigen also expressed in liver are tolerant, failing to proliferate or secrete interleukin (IL)-2 in response to antigen. Molecular and cellular analysis showed that these tolerant T cells expressed the IL-15 receptor alpha chain, and could be induced to proliferate in vitro in response to exogenous IL-15. Such proliferation abrogated tolerance and the rescued cells became effective in treating leukemia. Therefore, high-affinity CD8+ T cells are not necessarily deleted by encounter with self-antigen in the periphery, and can potentially be rescued and expanded for use in tumor immunotherapy. 相似文献
16.
The effects of naturally occurring metabolites were tested on the malate dehydrogenase (L-malate: NAD+oxidoreductase, EC 1.1.1.37) isozymes from the eucaryotic protist Physarum polycephalum. Several of the Krebs cycle intermediates were inhibitors for each isozyme indicating that a similar catalytic process was involved for both forms. The metabolites ATP, ADP, and AMP were inhibitors competitive with NAD for the mitochondrial isozyme but not the supernatant form. Several other nucleoside phosphates had no effects. Tests of protein sulfhydryl, arginine- and tyrosine-modifying reagents revealed a similar functional sensitivity by both isozymes to these reagents. Those results are compared with data on isozymes from more complex tissue with comments on the physiological significance of those combined data. 相似文献
17.
M. A. Aldred K. L. Dry E. B. Knight-Jones L. J. Hardwick P. W. Teague D. H. Lester J. Brown G. Spowart A. D. Carothers J. A. Raeburn A. C. Bird A. R. Fielder A. F. Wright 《American journal of human genetics》1994,55(5):916-922
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified. 相似文献
18.
19.
Approaches to breeding for salinity tolerance - a case study on Porteresia coarctata 总被引:2,自引:0,他引:2
R LATHA C SRINIVAS RAO H M SR SUBRAMANIAM P EGANATHAN M S SWAMINATHAN 《The Annals of applied biology》2004,144(2):177-184
Cereals are the world's major source of food for human nutrition. Among these, rice (Oryza sativa) is the most prominent and represents the staple diet for more than two-fifths (2.4 billion) of the world's population, making it the most important food crop of the developing world (Anon., 2000a). Rice production in vast stretches of coastal areas is hampered due to high soil salinity. This is because rice is a glycophyte and it does not grow well under saline conditions. In order to increase rice production in these areas there is a need to develop rice varieties suited to saline environments. Research has shown that Porteresia coarctata, a highly salt tolerant wild relative of rice growing in estuarine soils, is an important material for transferring salt tolerant characteristics to rice. It is quite possible that Porteresia may be used as a parent for evolving better and truly salt resistant varieties. The inadequate results and the difficulties associated with conventional breeding techniques necessitate the use of the tools of crop biotechnology in unravelling some of the characteristics of Porteresia that have been highlighted in this report. In view of the limited resources available for increasing salinity tolerance to the breeders to wild rice germplasm, Porteresia is undoubtedly one of the key source species for elevating salinity tolerance in cultivated rice. 相似文献
20.