首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1978年   1篇
排序方式: 共有29条查询结果,搜索用时 19 毫秒
11.
Abstract Phytomyza Fallén is the largest genus of leaf‐mining flies (Agromyzidae), with over 530 described species. Species of the superficially similar genus Chromatomyia Hardy have been included in Phytomyza by some authors and the status of the genus remains uncertain. Using 3076 bp of DNA sequence from three genes [cytochrome oxidase I (COI), CAD (rudimentary), phosphogluconate dehydrogenase (PGD)] and 113 exemplar species, we identified and tested the monophyly of host‐associated species groups in Phytomyza and Chromatomyia and investigated the phylogenetic relationships among these groups. Chromatomyia is polyphyletic and nested largely within Phytomyza; two small groups of species, however, are related more closely to Ptochomyza and Napomyza. Therefore, we synonymize Chromatomyia syn.n. , Ptochomyza syn.n. , and Napomyza syn.n. with Phytomyza, recognizing Ptochomyza, Napomyza and Phytomyza sensu stricto as subgenera of Phytomyza. We recognize five major clades within Phytomyza sensu stricto that comprise the majority of species ascribed previously to Chromatomyia and Phytomyza. Many species groups recognized previously were recovered as monophyletic, or virtually so, but some (e.g. robustella and atomaria groups) required emendation. On the basis of the proposed phylogeny and recent taxonomic literature, we present a preliminary revision of 24 species groups within Phytomyza, but leave many species unplaced. Evolution of internal pupariation (within the host’s tissue), regarded as a defining character of the former Chromatomyia, is discussed with regard to the new phylogeny, and we suggest a correlation with stem or leaf midrib mining. The large size of the Phytomyza lineage and an inferred pattern of host family‐specific species radiations make it a promising candidate for the study of macroevolutionary patterns of host shift and diversification in phytophagous insects. The proposed generic synonymies necessitate a number of new combinations. The following 46 species described in Chromatomyia are transferred to Phytomyza: P. actinidiae (Sasakawa) comb.n. , P. alopecuri (Griffiths) comb.n. , P. arctagrostidis (Griffiths) comb.n. , P. beigerae (Griffiths) comb.n. , P. blackstoniae (Spencer) comb.n. , P. centaurii (Spencer) comb.n. , P. chamaemetabola (Griffiths) comb.n. , P. cinnae (Griffiths) comb.n. , P. compta (Spencer) comb.n. , P. cygnicollina (Griffiths) comb.n. , P. doolittlei (Spencer) comb.n. , P. elgonensis (Spencer) comb.n. , P. eriodictyi (Spencer) comb.n. , P. flavida (Spencer) comb.n. , P. fricki (Griffiths) comb.n. , P. furcata (Griffiths) comb.n. , P. griffithsiana (Beiger) comb.n. , P. hoppiella (Spencer) comb.n. , P. ixeridopsis (Griffiths) comb.n. , P. kluanensis (Griffiths) comb.n. , P. leptargyreae (Griffiths) comb.n. , P. linnaeae (Griffiths) comb.n. , P. luzulivora (Spencer) comb.n. , P. mimuli (Spencer) comb.n. , P. mitchelli (Spencer) comb.n. , P. montella (Spencer) comb.n. , P. nigrilineata (Griffiths) comb.n. , P. nigrissima (Spencer) comb.n. , P. orbitella (Spencer) comb.n. , P. paraciliata (Godfray) comb.n. , P. poae (Griffiths) comb.n. , P. pseudomilii (Griffiths) comb.n. , P. qinghaiensis (Gu) comb.n. , P. rhaetica (Griffiths) comb.n. , P. scabiosella (Beiger) comb.n. , P. seneciophila (Spencer) comb.n. , P. shepherdiana (Griffiths) comb.n. , P. spenceriana (Griffiths) comb.n. , P. styriaca (Griffiths) comb.n. , P. subnigra (Spencer) comb.n. , P. suikazurae (Sasakawa) comb.n. , P. symphoricarpi (Griffiths) comb.n. , P. syngenesiae (Hardy) comb.n. , P. thermarum (Griffiths) comb.n. , P. torrentium (Griffiths) comb.n. and P. tschirnhausi (Griffiths) comb.n. Furthermore, we transfer all species of Napomyza to Phytomyza, resulting in the following new combinations: P. achilleanella (Tschirnhaus) comb.n. , P. acutiventris (Zlobin) comb.n. , P. angulata (Zlobin) comb.n. , P. arcticola (Spencer) comb.n. , P. bellidis (Griffiths) comb.n. , P. carotae (Spencer) comb.n. , P. cichorii (Spencer) comb.n. , P. curvipes (Zlobin) comb.n. , P. dubia (Zlobin) comb.n. , P. filipenduliphila (Zlobin) comb.n. , P. flavivertex (Zlobin) comb.n. , P. flavohumeralis (Zlobin) comb.n. , P. genualis (Zlobin) comb.n. , P. grandella (Spencer) comb.n. , P. humeralis (Zlobin) comb.n. , P. immanis (Spencer) comb.n. , P. immerita (Spencer) comb.n. , P. inquilina (Kock) comb.n. , P. kandybinae (Zlobin) comb.n. , P. lacustris (Zlobin) comb.n. , P. laterella (Zlobin) comb.n. , P. manni (Spencer) comb.n. , P. maritima (Tschirnhaus) comb.n. , P. merita (Zlobin) comb.n. , P. mimula (Spencer) comb.n. , P. minuta (Spencer) comb.n. , P. montanoides (Spencer) comb.n. , P. neglecta (Zlobin) comb.n. , P. nigriceps (van der Wulp) comb.n. , P. nugax (Spencer) comb.n. , P. pallens (Spencer) comb.n. , P. paratripolii (Chen & Wang) comb.n. , P. plumea (Spencer) comb.n. , P. plumigera (Zlobin) comb.n. , P. prima (Zlobin) comb.n. , P. pubescens (Zlobin) comb.n. , P. schusteri (Spencer) comb.n. , P. scrophulariae (Spencer) comb.n. , P. suda (Spencer) comb.n. , P. tanaitica (Zlobin) comb.n. , P. tenuifrons (Zlobin) comb.n. , P. vivida (Spencer) comb.n. , P. xizangensis (Chen & Wang) comb.n. and P. zimini (Zlobin) comb.n. Phytomyza asparagi (Hering) comb.n. and P. asparagivora (Spencer) comb.n. are transferred from Ptochomyza. In Phytomyza ten new names are proposed for secondary homonyms created by generic synonymy: P. echo Winkler nom.n. for P. manni Spencer, 1986; P. californiensis Winkler nom.n. for C. montana Spencer, 1981 ; P. griffithsella Winkler nom.n. for C. griffithsi Spencer, 1986; P. vockerothi Winkler nom.n. for C. nigrella Spencer, 1986; P. kerzhneri Winkler nom.n. for N. nigricoxa Zlobin, 1993; P. asteroides Winkler nom.n. for N. tripolii Spencer, 1966; P. minimoides Winkler nom.n. for N. minima Zlobin, 1994; P. nana Winkler nom.n. for N. minutissima Zlobin, 1994; P. ussuriensis Winkler nom.n. for N. mimica Zlobin, 1994 and P. zlobini Winkler nom.n. for N. hirta Zlobin, 1994.  相似文献   
12.
Sisyrinchium micranthum is native to southern Brazil and shows a wide range of morphological variation in this region. This study was performed to compare individuals of this species in terms of traits such as morphology, chromosome number, meiotic behaviour, pollen viability and genetic diversity using inter simple sequence repeat markers. First, general morphological aspects were evaluated and plants were classified into three morphological categories (CI, CII and CIII) to analyse the cytogenetic and genetic data. Three chromosome numbers corresponding to three ploidies were found: 2n = 2x = 16, 2n = 4x = 32 and 2n = 6x = 48. All morphological types showed regular meiotic behaviour and high meiotic index values and pollen viability. CII is the most frequent in southern Brazil. The most common haploid chromosome number, n = 8, has not been reported previously in this species. The percentage of polymorphic loci ranged from 6.45 to 61.29% for each accession. Molecular and cytogenetic analyses indicate that some S. micranthum accessions may have more than one ploidy. This study represents the first effort to characterize this taxonomically complex species based on cytogenetic and genetic aspects. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 350–364.  相似文献   
13.
The colonisation history and genetic structure of the common vole ( Microtus arvalis ) was investigated in the region of the Alps by analysing the mitochondrial cytochrome b gene (mtDNA) and 19 microsatellite loci (nucDNA) for 137 voles from 52 localities. mtDNA data provided a much refined distribution of three highly divergent evolutionary lineages in the region compared to previous studies. Although high mountain ranges are widely accepted to be barriers for colonisation processes for many organisms and especially small terrestrial mammals, our phylogeographic analyses showed clear evidence of four transalpine colonisation events by the common vole. Individual-based phylogenetic analyses of nucDNA and two alternative Bayesian-clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level was restricted to the regions of contact between the lineages. mtDNA patterns and strong female philopatry in M. arvalis suggest that the crossings of the Alps occurred during the colonisation of the region when it was free from ice after the last glaciation. nucDNA patterns suggest that some of the transalpine elements of this phylogeographic pattern were subsequently eroded by male-biased gene flow. We conclude that the combination of phylogeography and landscape genetics at the individual level can provide very detailed insights into colonisation events and may even allow differentiation between historical and more recent processes.  相似文献   
14.
1. Additive partitioning of three measures of diversity (species richness, Shannon's diversity index H and Simpson's diversity D) was used to study the relationship between local and regional diversity of benthic macroinvertebrate communities of boreal lakes (littoral habitats) and streams (riffle habitats) across three spatial scales (sampling sites, ecoregions and biogeographic regions). 2. Alpha (α) and beta (β) diversity are defined as within‐habitat and between‐habitat diversity, respectively. According to the concept of additive partitioning, diversity can be partitioned across multiple spatial scales such that the total (γ) diversity on one spatial scale becomes within‐habitat (α) diversity at the next higher scale. Hence, the total diversity at one scale is determined by the α diversity and the between‐habitat diversity (β) at the next lower scale. Consequently, one of the advantages of additive partitioning is that it is possible to study simultaneously β diversity and the regional‐local species relationship and the scale dependence of α and β components. 3. For both lakes and streams α diversity was low for sites and ecoregions, whereas β diversity was high, indicating that among‐site factors are important in describing the variability among the lakes and streams studied here. 4. Weak, albeit significant, evidence was found for regional and local species saturation patterns. Multiple stepwise regression indicated that local processes might be more important in structuring lake‐littoral and stream‐riffle species assemblages than regional processes. From these results we conclude that environmental heterogeneity may act as an important factor contributing to species coexistence, resulting in the observed saturation patterns. 5. Our study supports the use of additive partitioning for identifying specific patterns of macroinvertebrate diversity on multiple spatial scales and the underlying processes generating these patterns. This information is needed to improve understanding of the relation between patterns and processes affecting (decreasing) trends in aquatic biodiversity.  相似文献   
15.
Six new fossils of Micromalthus (Coleoptera: Archostemata) from Dominican amber are compared with extant and previously described fossil micromalthid beetles. The amber inclusions are well preserved and all important morphological features are visible. Taking into account the morphological variability of the extant species Micromalthus debilis LeConte, 1878 , it is not possible to find any morphological features that distinguish the fossils from the extant species. This also applies to the Dominican amber inclusion described as Micromalthus anasi Perkovsky, 2008, which therefore is considered a junior synonym of M. debilis. The lack of morphological change in M. debilis over time might possibly be explained by unusually stable environmental conditions, as this species occupies a very specialized ecological niche in decaying timber. A general survey of fossil insects indistinguishable from extant species is presented. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 300–311.  相似文献   
16.
Positive and negative species interactions are important factors in structuring vegetation communities. Studies in many ecosystems have focussed on competition; however, facilitation has often been found to outweigh competition under harsh environmental conditions. The balance between positive and negative species interactions is known to shift along spatial, temporal and environmental gradients and thus is likely to be affected by climate change. Winter temperature and precipitation patterns in Interior Alaska are rapidly changing and could lead to warmer winters with a shallow, early melting snow cover in the near future. We conducted snow manipulation and neighbour removal experiments to test whether the relative importance of positive and negative species interactions differs between three winter climate scenarios in a subarctic tundra community. In plots with ambient, manually advanced or delayed snowmelt, we assessed the relative importance of neighbours for survival, phenology, growth and reproduction of two dwarf shrub species. Under ambient conditions and after delayed snowmelt, positive and negative neighbour effects were generally balanced, but when snowmelt was advanced we found overall facilitative neighbour effects on survival, phenology, growth and reproduction of Empetrum nigrum, the earlier developing of the two target species. As earlier snowmelt was correlated with colder spring temperatures and a higher number of frosts, we conclude that plants experienced harsher environmental conditions after early snowmelt and that neighbours could have played an important role in ameliorating the physical environment at the beginning of the growing season.  相似文献   
17.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   
18.
ABSTRACT. The trophozoites of two novel archigregarines, Selenidium pisinnus n. sp. and Filipodium phascolosomae n. sp., were described from the sipunculid Phascolosoma agassizii . The trophozoites of S. pisinnus n. sp. were relatively small (64–100 μm long and 9–25 μm wide), had rounded ends, and had about 21 epicytic folds per side. The trophozoites of F. phascolosomae n. sp. were highly irregular in shape and possessed hair-like surface projections. The trophozoites of this species were 85–142 μm long and 40–72 μm wide and possessed a distinct longitudinal ridge that extended from the mucron to the posterior end of the cell. In addition to the small subunit (SSU) rDNA sequences of these two species, we also characterized the surface morphology and SSU rDNA sequence of Selenidium orientale , isolated from the sipunculid Themiste pyroides . Molecular phylogenetic analyses demonstrated that S. pisinnus n. sp. and S. orientale formed a strongly supported clade within other Selenidium and archigregarine-like environmental sequences. Filipodium phascolosomae n. sp. formed the nearest sister lineage to the dynamic, tape-like gregarine Selenidium vivax . Overall, these data enabled us to reassess the molecular systematics of archigregarines within sipunculid hosts and make the following revisions: (1) Filipodium was transferred from the Lecudinidae (eugregarines) to the Selenidiidae (archigregarines), and (2) Platyproteum n. g. was established for Platyproteum vivax n. comb. (ex. S. vivax ) in order to account for the highly divergent morphological features and better resolved phylogenetic position of this lineage.  相似文献   
19.
Laser microprobe mass spectrometry (LMMS) is an interesting technique for micro- and surface analysis. It employs local ionization by a focused laser under high power density conditions and subsequent mass analysis of the generated ions. This paper surveys the main LMMS instruments and their operational principles. Sample preparation is discussed in the context of biological materials. The problem of quantification is addressed. Selected examples show the way that precise information on the molecular composition can be deduced from the detected signals. Both inorganic and organic substances can be identified, even without reference spectra, from in-situ analysis with a lateral resolution in the order of 1 to 5μm.  相似文献   
20.
Differences in recombination rates along the chromosomes can influence the evolution of neutral loci via hitchhiking effects. Generally, these effects should be stronger in regions of low recombination than in regions of high recombination. Detailed information on physical and genetic maps in the house mouse now allows an assessment of the correlation between neutral variability and recombination rates at given chromosomal regions. We chose 29 microsatellite loci from chromosomal regions which show differences in recombination rates and tested their variability in samples from five wild populations of Mus musculus musculus and M. m. domesticus . Our results provide no evidence for a correlation between microsatellite variability and recombination rates. This suggests that the high average mutation rate of microsatellites in mammals counterbalances the effects of long-range hitchhiking in the mouse genome.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 629–635.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号