首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4972篇
  免费   677篇
  国内免费   2515篇
  2024年   56篇
  2023年   162篇
  2022年   247篇
  2021年   345篇
  2020年   296篇
  2019年   324篇
  2018年   230篇
  2017年   204篇
  2016年   197篇
  2015年   324篇
  2014年   442篇
  2013年   406篇
  2012年   552篇
  2011年   545篇
  2010年   408篇
  2009年   391篇
  2008年   440篇
  2007年   425篇
  2006年   368篇
  2005年   346篇
  2004年   258篇
  2003年   226篇
  2002年   191篇
  2001年   170篇
  2000年   140篇
  1999年   130篇
  1998年   70篇
  1997年   45篇
  1996年   36篇
  1995年   31篇
  1994年   17篇
  1993年   15篇
  1992年   27篇
  1991年   18篇
  1990年   10篇
  1989年   15篇
  1988年   8篇
  1987年   4篇
  1986年   11篇
  1985年   9篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   1篇
  1965年   1篇
  1955年   1篇
  1950年   4篇
排序方式: 共有8164条查询结果,搜索用时 449 毫秒
111.
Li  Zhibin  Hua  Zetian  Dong  Li  Zhu  Wei  He  Guangsheng  Qu  Lijun  Qi  Na  Xu  Zhengjin  Wang  Fang 《Journal of Plant Growth Regulation》2020,39(1):60-71
Journal of Plant Growth Regulation - RAD-seq method is a recently developed, cost-effective, and high-throughput approach for detecting genetic variability based on single-nucleotide polymorphisms...  相似文献   
112.
113.
药用甘草组织培养生产黄酮的研究进展   总被引:1,自引:0,他引:1  
甘草是驰名中外的中药材,有"十方九草"之称,甘草黄酮为其主要成分之一,不仅具有消炎保肝、抗氧化、抗肿瘤、抗病毒和抗菌等药用功效,还可用于食品、化妆品等工业生产中。本文介绍了甘草黄酮的种类、组织化学定位,并着重总结了黄酮的组织培养获得途径及生物合成调控的影响因素,在此基础上,对今后的研究及应用进行了分析和展望,旨在为更好地开发利用甘草黄酮提供一定的依据。  相似文献   
114.
The effect of ginsenoside Rg1 (Rg1) on hepatic damage caused by concanavalin A (Con A) has not been fully elucidated. This study was designed to evaluate the protective effect of Rg1 on Con A-induced hepatitis in mice and explore the potential mechanisms of this effect. C57BL/6 mice were divided randomly into the following four experimental groups: phosphate-buffered saline group, Rg1 group, Con A group, Con A + Rg1 group. Mice received Rg1 (20 mg/kg) 3 h before intravenous administration of Con A (15 mg/kg). Levels of alanine transaminase, aspartate transaminase and cytokine production were measured, the amount of phosphorylated IκBα and p65 were tested, the numbers of CD4+ and CD8+ T lymphocytes infiltrated in the blood, spleen and liver were calculated, intercellular adhesion molecule-1 (ICAM-1) and interferon-inducible chemokine-10 (CXCL-10) levels were measured and histological examination of the livers was conducted. Pretreatment with Rg1 markedly reduced the elevated levels of serum aminotransferase, ameliorated liver damage and suppressed proinflammatory cytokines secretion via inhibition NF-κB activity following Con A injection of mice. Furthermore, Rg1 administration reduced ICAM-1 and CXCL-10 mRNA expression in the liver as well as the number of CD4+ and CD8+ T lymphocytes infiltrating in the liver. Rg1 reduced the incidence of liver damage through inhibition of the proinflammatory response and suppressed the recruitment of CD4+ and CD8+ T lymphocytes to the liver. These data indicate that Rg1 represents a novel agent for the treatment of T lymphocyte-dependent liver injury.  相似文献   
115.
??2-glycoprotein I (??2-GPI) is a plasma glycoprotein with diverse functions, but the impact and molecular effects of ??2-GPI on vascular biology are as yet unclear. Based on the limited information available on the contribution of ??2-GPI to endothelial cells, we investigated the effect of ??2-GPI on cell growth and migration in human aortic endothelial cells (HAECs). The regulation of ??2-GPI as part of intracellular signaling in HAECs was also examined. Vascular endothelial growth factor (VEGF) is a pro-angiogenic factor that may regulate endothelial functions. We found that ??2-GPI dose-dependently inhibited VEGF-induced endothelial cell growth using the 3-(4,5-dimethylthiazol-2-yl)-2,5-dipenyl tetrazolium bromide assay and cell counts. Using wound healing and Boyden chamber assays, ??2-GPI remarkably reduced VEGF-increased cell migration at the physiological concentration. Furthermore, ??2-GPI suppressed VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2), extracellular signal-regulated kinase 1/2 (ERK1/2), and Akt. These results suggest that ??2-GPI plays an essential role in the down-regulation of VEGF-induced endothelial responses and may be a useful component for anti-angiogenic therapy.  相似文献   
116.
Summary

Proteins synthesized and accumulated during oogenesis or Pseudopotamilla occelata were analyzed by two-dimensional Polyacrylamide gel electrophoresis and fluorography. Significant changes in the patterns of synthesis and accumulation occur during oogenesis, paticularly between previtellogenic and vitellogenic stages, although many of the proteins are represented throughout the process. The changes may be generally dependent upon the variation in the gene expression affecting autosynthesis of proteins. However, appearance of proteins, which occur only at the vitellogenic stages but apparently not synthesized within the oocytes, indicates that heterosynthetic proteins are stage-specifically transported into oocytes.  相似文献   
117.
Although studies have shown that arsenic exposure can induce apoptosis in a variety of cells, the exact molecular mechanism of chronic arsenicosis remains unclear. Based on our previous study on human serum, the present study was to determine whether pigment epithelium-derived factor (PEDF) plays a role in the damage induced by chronic arsenic exposure in a rat model and to explore the possible signaling pathway involved. Thirty male Wistar rats were randomly divided into three groups and the arsenite doses administered were 0, 10, and 50 mg/L, respectively. The experiment lasted for 6 months. Our results showed that level of arsenic increased significantly in serum, liver, brain, and kidney in arsenic-exposed groups. It was indicated that PEDF protein was widely distributed in the cytoplasm of various types of cells in liver, brain, and kidney. PEDF protein level was only changed when the arsenite dose reached 50 mg/L in liver and brain, whereas it was not changed in the kidney. In order to investigate the possible mechanism of PEDF-exerted damages upon arsenite exposure, apoptosis in liver and brain was assessed. The proportion of apoptotic cells gradually increased with increasing arsenic administration. The ratio of Bax/Bcl-2 in the high arsenic group (50 mg/L) was significantly higher than that in the control group. Therefore, we thought PEDF played a role in cell apoptosis of liver and brain which induced by sodium arsenite exposure, and the results also demonstrated that Bax and Bcl-2 might be two key targets in the action of PEDF.  相似文献   
118.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   
119.
Mutations in Cu,Zn-superoxide dismutase (mtSOD1) cause familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease resulting from motor neuron degeneration. Here, we demonstrate that wild type SOD1 (wtSOD1) undergoes palmitoylation, a reversible post-translational modification that can regulate protein structure, function, and localization. SOD1 palmitoylation was confirmed by multiple techniques, including acyl-biotin exchange, click chemistry, cysteine mutagenesis, and mass spectrometry. Mass spectrometry and cysteine mutagenesis demonstrated that cysteine residue 6 was the primary site of palmitoylation. The palmitoylation of FALS-linked mtSOD1s (A4V and G93A) was significantly increased relative to that of wtSOD1 expressed in HEK cells and a motor neuron cell line. The palmitoylation of FALS-linked mtSOD1s (G93A and G85R) was also increased relative to that of wtSOD1 when assayed from transgenic mouse spinal cords. We found that the level of SOD1 palmitoylation correlated with the level of membrane-associated SOD1, suggesting a role for palmitoylation in targeting SOD1 to membranes. We further observed that palmitoylation occurred predominantly on disulfide-reduced as opposed to disulfide-bonded SOD1, suggesting that immature SOD1 is the primarily palmitoylated species. Increases in SOD1 disulfide bonding and maturation with increased copper chaperone for SOD1 expression caused a decrease in wtSOD1 palmitoylation. Copper chaperone for SOD1 overexpression decreased A4V palmitoylation less than wtSOD1 and had little effect on G93A mtSOD1 palmitoylation. These findings suggest that SOD1 palmitoylation occurs prior to disulfide bonding during SOD1 maturation and that palmitoylation is increased when disulfide bonding is delayed or decreased as observed for several mtSOD1s.  相似文献   
120.
Rice seed has been used as a production platform for high value recombinant proteins. When mature human interleukin 7 (hIL-7) was expressed as a secretory protein in rice endosperm by ligating the N terminal glutelin signal peptide and the C terminal KDEL endoplasmic reticulum (ER) retention signal to the hIL-7 cytokine to improve production yield, this protein accumulated at levels visible by Coomassie Brilliant Blue staining. However, the production of this protein led not only to a severe reduction of endogenous seed storage proteins but also to a deterioration in grain quality. The appearance of aberrant grain phenotypes (such as floury and shrunken) was attributed to ER stress induced by the retention of highly aggregated unfolded hIL-7 in the ER lumen, and the expression levels of chaperones such as BiPs and PDIs were enhanced in parallel with the increase in hIL-7 levels. The activation of this ER stress response was shown to be mainly mediated by the OsIRE1-OsbZIP50 signal cascade, based on the appearance of unconventional splicing of OsbZIP50 mRNA and the induction of OsBiP4&5. Interestingly, the ER stress response could be induced by lower concentrations of hIL-7 versus other types of cytokines such as IL-1b, IL-4, IL-10, and IL-18. Furthermore, several ubiquitin 26S proteasome-related genes implicated in ER-associated degradation were upregulated by hIL-7 production. These results suggest that severe detrimental effects on grain properties were caused by proteo-toxicity induced by unfolded hIL-7 aggregates in the ER, resulting in the triggering of ER stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号