首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   8篇
  2022年   2篇
  2021年   7篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   5篇
  2013年   18篇
  2012年   16篇
  2011年   13篇
  2010年   13篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2002年   1篇
  2001年   11篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1986年   1篇
  1974年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
51.
We have isolated a hyperrecombinogenic Nicotiana tabacum mutant. The mutation, Hyrec, is dominant and segregates in a Mendelian fashion. In the mutant, the level of mitotic recombination between homologous chromosomes is increased by more than three orders of magnitude. Recombination between extrachromosomal substrates is increased six- to ninefold, and intrachromosomal recombination is not affected. Hyrec plants were found to perform non-homologous end joining as efficiently as the wild type, ruling out the possibility that the increase in homologous recombination is due to a defect in end joining. In addition, Hyrec plants show significant resistance to gamma-irradiation, whereas UV resistance is not different from the wild type. This suggests that homologous recombination can be strongly up-regulated in plants. Moreover, Hyrec constitutes a novel type of mutation: no similar mutant was reported in plants and hyperrecombinogenic mutants from other organisms usually show sensitivity to DNA damaging agents. We discuss the insight that this mutant provides into understanding the mechanisms of recombination plus the potential application for gene targeting in plants.  相似文献   
52.
Base substitutions were detected as a consequence of double-strand break (DSB) repair in plants. The fidelity of processing free DNA ends was analyzed using a stop-codon inactivated beta-glucuronidase (uidA) reporter gene. Circular and linear plasmids carrying the inactive gene were delivered to Nicotiana plumbaginifolia protoplasts or Nicotiana tabacum leaves. Processing of breaks which occurred in close proximity (5-9 bp) to termination codons led to occasional reversions and subsequent gene reactivation. In contrast, the repair of breaks occurring at a greater distance from the stop-codon resulted in a significantly lower number of reversions. The data suggest that the error prone processing of the free ends involves partial degradation and re-synthesis of the DNA repair substrate.  相似文献   
53.
54.
The efficiency of cell-penetrating peptide (CPP)-mediated dsDNA transfection in triticale microspores was investigated through transient and stable integration of the β-glucoronidase (GUS) reporter gene and expression assays in microspore-derived embryos and plantlets. The RecA protein, usually associated with prokaryote homologous recombination, was also tested for its capacity to protect the linear transgene from degradation. Transfections mediated by the CPP nanocarriers Tat2 and Pep1 reduced the number of regenerated embryos from 158 in the control to 122 and 100, respectively. The co-delivery of CPP-dsDNA with RecA protein also resulted in fewer embryos, 87 and 104 for Tat2 and Pep1, respectively. Delivery of dsDNA with Tat2 or Pep1, without RecA, resulted in the highest frequencies of GUS activity in regenerated embryos, at 26%. Co-delivery with RecA decreased the percentage of GUS-positive embryos to 16%. Interestingly, co-delivered RecA-dsDNA reduced the loss of integrity of inserted genetic construct, as observed by polymerase chain reaction (PCR) amplification of the 5′ and 3′ ends. GUS activity was also detected in mature haploid and diploid plants. Of all treatments, 31 T0 plants tested positive for the GUS gene by quantitative PCR, although 50% were derived from the single treatment dsDNA-Tat2. The estimated copy number of the GUS transgene varied between four and eight. This study provides the foundations for CPP-mediated co-delivery of dsDNA and protein RecA in haploid microspore nuclei for functional genomic studies in crop species.  相似文献   
55.
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.  相似文献   
56.
The retaining endo-1,3-β-d-glucanase (EC 3.2.1.39) was isolated from the crystalline styles of the commercially available Vietnamese edible mussel Perna viridis. It catalyzes hydrolysis of β-1,3-bonds in glucans and enables to catalyze a transglycosylation reaction. Resources of mass-spectrometry for analysis of enzymatic products were studied. cDNA sequence of endo-1,3-β-d-glucanase was determined by RT-PCR in conjunction with the rapid amplification of cDNA ends (RACE) methods. The cDNA of 1380 bp contains an open reading frame of 1332 bp encoding a mature protein of 328 amino acids. On basis of amino acid sequence analysis endo-1,3-β-d-glucanase was classified as a glycoside hydrolase of family 16.  相似文献   
57.
58.
In the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28 days post germination (dpg). We found that exposure at 14 and 21 dpg resulted in a higher increase in HRF as compared to exposure at 7 dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF. Exposure at 7 dpg had a positive effect on somatic growth of plants; plants exposed to stress at this age had larger leaves. The analysis of HRF in the progeny showed that the progeny of plants exposed to stress at 7 dpg had an increase in somatic HRF and showed larger sizes of recombination spots on leaves. The progeny of plants exposed to UV-C at 7 dpg and the progeny of plants exposed to cold or heat at 28 dpg had larger leaves as compared to control plants. To summarize, our experiments showed that changes in somatic and transgenerational HRF depend on the type of stress plants are exposed to, time of exposure during development and the duration of exposure.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-013-0197-z) contains supplementary material, which is available to authorized users.  相似文献   
59.
Ionizing radiation (IR) is a pivotal diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. IR-induced genome instability has been well-documented in directly exposed cells and organisms. It has also been observed in distant 'bystander' cells. Enigmatically, increased instability is even observed in progeny of pre-conceptually exposed animals, including humans. The mechanisms by which it arises remain obscure and, recently, they have been proposed to be epigenetic in nature. Three major epigenetic phenomena include DNA methylation, histone modifications and small RNA-mediated silencing. This review focuses on the role of DNA methylation and small RNAs in directly exposed and bystander tissues and in IR-induced transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号