首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1264篇
  免费   80篇
  国内免费   1篇
  1345篇
  2024年   4篇
  2023年   15篇
  2022年   25篇
  2021年   45篇
  2020年   31篇
  2019年   41篇
  2018年   45篇
  2017年   33篇
  2016年   45篇
  2015年   54篇
  2014年   83篇
  2013年   76篇
  2012年   76篇
  2011年   98篇
  2010年   52篇
  2009年   37篇
  2008年   65篇
  2007年   58篇
  2006年   61篇
  2005年   46篇
  2004年   48篇
  2003年   42篇
  2002年   42篇
  2001年   27篇
  2000年   14篇
  1999年   19篇
  1998年   11篇
  1997年   8篇
  1996年   11篇
  1995年   4篇
  1994年   4篇
  1992年   19篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   8篇
  1983年   8篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   3篇
排序方式: 共有1345条查询结果,搜索用时 0 毫秒
21.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   
22.
Parthenium poses serious threat to modern crop production system and necessitate evaluating control practices for its effective management. Efficacy of different weed control practices for controlling parthenium was explored in conventional and deep tillage systems in the field conditions. Hand hoeing (20 and 35 days after emergence), S-Metolachlor (pre-emergence herbicide), sorghum straw mulch @ 5 tons ha-1 and combination of hand hoeing and sorghum straw mulch (hand hoeing at 20 and straw mulch at 35 days after emergence) were used as weed control practice. Weedy check where no weed control measure was applied was also included in this experiment for comparison. Results concluded that the all weed management treatments significantly reduced parthenium density, its fresh and dry biomass during both the years of study as compared to weedy check. Maximum sunflower achene yield was recorded in hand hoeing (20 and 35 days after emergence) in combination with deep tillage. So, mold bold plough used for the purpose of deep tillage should be encouraged for better control of parthenium and higher achene yield of sunflower crop (3293.3 kg ha-1 in 2017 and 3221.3 kg ha-1 in 2018). Moreover, is also inferred that total dose of herbicide might be reduced by using hoeing and mulching in an integrated way.  相似文献   
23.
24.
Stone fruits and pome fruits are cultivated commercially worldwide. In India, they are grown in temperate regions, which mainly includes Jammu and Kashmir, Uttarakhand, Himachal Pradesh and some North-Eastern states. In this study, an attempt has been made to identify the Prunus necrotic ringspot virus (PNRSV) infecting stone and pome fruits in India and to characterise them on the molecular level. Surveys were conducted in the temperate fruit-growing areas and incidence of PNRSV was detected by serological and molecular means in almond, apple, cherry, nectarine, peach, plum and wild cherry. Further diversity analysis of PNRSV was performed using bioinformatics tools such as clustalW, DNA Data Bank of Japan, MultAlin and Recombination Detection Programme. PNRSV was detected in plum, peach, cherry, almond, nectarine, wild cherry and apple. In the diversity analysis study on the basis of coat protein gene, it was found that the isolates showed identity levels from 82 to 100%. In a plum isolate, a stretch of amino acids from 207 to 221 was found variable from Indian and other isolates. In one of the Indian apple isolates, “NR” repeats at 41–44 position (characteristic of PV-32 group, Group I) were identified. Phylogenetic analysis revealed that Indian isolates are falling in Group-I. Movement protein was also amplified from peach and multiple alignment studies showed that N-terminus was mostly conserved, whereas the C-terminal was highly variable.  相似文献   
25.
26.
Membrane microcompartments of the early endosomes serve as a sorting and signaling platform, where receptors are either recycled back to the plasma membrane or forwarded to the lysosome for destruction. In metazoan cells, three complexes, termed BLOC-1 to -3, mediate protein sorting from the early endosome to lysosomes and lysosome-related organelles. We now demonstrate that BLOC-1 is an endosomal Rab-GAP (GTPase-activating protein) adapter complex in yeast. The yeast BLOC-1 consisted of six subunits, which localized interdependently to the endosomes in a Rab5/Vps21-dependent manner. In the absence of BLOC-1 subunits, the balance between recycling and degradation of selected cargoes was impaired. Additionally, our data show that BLOC-1 is both a Vps21 effector and an adapter for its GAP Msb3. BLOC-1 and Msb3 interacted in vivo, and both mutants resulted in a redistribution of active Vps21 to the vacuole surface. We thus conclude that BLOC-1 controls the lifetime of active Rab5/Vps21 and thus endosomal maturation along the endocytic pathway.  相似文献   
27.
28.
29.
α-synuclein dysregulation is a critical aspect of Parkinson''s disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS) in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson''s disease, thus connecting these aspects of Parkinson''s disease to the propagation of α-synuclein pathology in cells.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号