首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   9篇
  国内免费   1篇
  2023年   1篇
  2022年   6篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   6篇
  2015年   6篇
  2014年   16篇
  2013年   7篇
  2012年   8篇
  2011年   19篇
  2010年   5篇
  2009年   6篇
  2008年   21篇
  2007年   5篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1982年   2篇
  1979年   3篇
  1974年   2篇
  1971年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
101.

Background

Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003.

Results

We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods.

Conclusions

We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state, or whether the observed changes represent a new genetic equilibrium.  相似文献   
102.
Narayan M  Mirza SP  Twining SS 《Proteomics》2011,11(8):1382-1390
Maspin, a 42-kDa non-classical serine protease inhibitor (serpin), is expressed by epithelial cells of various tissues including the cornea. The protein localizes to the nucleus and cytosol, and is present in the extracellular space. While extracellular maspin regulates corneal stromal fibroblast adhesion and inhibits angiogenesis during wound healing in the cornea, the molecular mechanism of its extracellular functions is unclear. We hypothesized that identifying post-translational modifications of maspin, such as phosphorylation, may help decipher its mode of action. The focus of this study was on the identification of phosphorylation sites on extracellular maspin, since the extracellular form of the molecule is implicated in several functions. Multi-stage fragmentation MS was used to identify sites of phosphorylation on extracellular corneal epithelial cell maspin. A total of eight serine and threonine phosphorylation sites (Thr50, Ser97, Thr118, Thr157, Ser240, Ser298, Thr310 and Ser316) were identified on the extracellular forms of the molecule. Phosphorylation of tyrosine residues was not detected on extracellular maspin from corneal epithelial cell, in contrast to breast epithelial cells. This study provides the basis for further investigation into the functional role of phosphorylation of corneal epithelial maspin.  相似文献   
103.
The human eosinophil granule ribonuclease, eosinophil‐derived neurotoxin (EDN) has been shown to have antiviral activity against respiratory syncytial virus‐B (RSV‐B). Other closely related and more active RNases such as RNase A, onconase, and RNase k6 do not have any antiviral activity. A remarkable unique feature of EDN is a nine‐residue insertion in its carboxy‐terminal loop, L7 which is not present in RNase A, and differs in sequence from the corresponding loop in another eosinophil RNase, eosinophil cationic protein (ECP). ECP has a much lower antiviral activity as compared to EDN. The current study probed the role of loop L7 of EDN in its antiviral activity. Three residues in loop L7, Arg117, Pro120, and Gln122, which diverge between EDN, ECP, and RNase A, were mutated to alanine alone and in combination to generate single, double, and triple mutants. These mutants, despite having RNase activity had decreased antiviral activity towards RSV suggesting the involvement of loop L7 in the interaction of EDN with RSV. It appears that the mutations in loop L7 disrupt the interaction of protein with the viral capsid, thereby inhibiting its entry into the virions. The study demonstrates that besides the RNase activity, loop L7 is another important determinant for the antiviral activity of EDN. J. Cell. Biochem. 113: 3104–3112, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
104.
Inactivation of spores of Bacillus subtilis (ATCC 6633) on two different grades of cellulose filter paper (Whatman Grades 2 and 6), by ultraviolet light (u.v.), at an intensity of approximately 4·5 Wm−2 and at fluences of up to 2 × 103 Jm−2, and u.v. in the presence of hydrogen peroxide, is described in terms of multi-target and single hit–single target kinetic expressions. Wet spores were inactivated at rates ranging from 6·7 to 10·6 higher than that of dry spores on both grades of filter paper. In addition, spore inactivation was up to 5·6 times more rapid on Grade 2 filter paper. Synergistic inactivation was seen to occur when spores were irradiated in the presence of 1% (w/v) hydrogen peroxide with rates up to 5·3 times higher than with treatment solely by u.v. The results obtained are discussed in general terms with particular reference to surface characteristics which might provide shielding to micro-organisms from incident u.v. light.  相似文献   
105.
106.
Early acquisition of Pseudomonas aeruginosa is associated with a poorer prognosis in patients with cystic fibrosis. We investigated whether polymorphisms in CD14, the lipopolysaccharide receptor, increase the risk of early infection. Forty-five children with cystic fibrosis were investigated with annual bronchoalveolar lavage (BAL) and plasma sCD14 levels. Plasma sCD14 levels were significantly lower in children from whom P.aeruginosa was subsequently isolated (492.75 μg/ml vs. 1339.43 μg/ml, p = 0.018). Those with the CD14 -159CC genotype had a significantly increased risk of early infection with P.aeruginosa suggesting that CD14 C-159T plays a role in determining the risk of early infection with P.aeruginosa.  相似文献   
107.
The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the mRNA expression of interferon-γ (IFN-γ), but increased the mRNA expression of transforming growth factor-β (TGF-β), in the jejunum mucosa of piglets, when compared to those in the control (P < 0.05). In summary, supplemental ZnO was effective on the prevention of post-weaning diarrhea (PWD) in weaned piglets and showed comparative growth-promoting effect on in-feed antibiotics, probably by the mechanism of improvement of the antioxidant capacity, restoration of intestinal barrier function and development, and modulation of immune functions.  相似文献   
108.

Background  

Tropical rain forests are the most diverse terrestrial ecosystems on the planet. How this diversity evolved remains largely unexplained. In Africa, rain forests are situated in two geographically isolated regions: the West-Central Guineo-Congolian region and the coastal and montane regions of East Africa. These regions have strong floristic affinities with each other, suggesting a former connection via an Eocene pan-African rain forest. High levels of endemism observed in both regions have been hypothesized to be the result of either 1) a single break-up followed by a long isolation or 2) multiple fragmentation and reconnection since the Oligocene. To test these hypotheses the evolutionary history of endemic taxa within a rain forest restricted African lineage of the plant family Annonaceae was studied. Molecular phylogenies and divergence dates were estimated using a Bayesian relaxed uncorrelated molecular clock assumption accounting for both calibration and phylogenetic uncertainties.  相似文献   
109.
Proteomics has been proposed as one of the key technologies in the postgenomic era. So far, however, the comprehensive analysis of cellular proteomes has been a challenge because of the dynamic nature and complexity of the multitude of proteins in cells and tissues. Various approaches have been established for the analyses of proteins in a cell at a given state, and mass spectrometry (MS) has proven to be an efficient and versatile tool. MS-based proteomics approaches have significantly improved beyond the initial identification of proteins to comprehensive characterization and quantification of proteomes and their posttranslational modifications (PTMs). Despite these advances, there is still ongoing development of new technologies to profile and analyze cellular proteomes more completely and efficiently. In this review, we focus on MS-based techniques, describe basic approaches for MS-based profiling of cellular proteomes and analysis methods to identify proteins in complex mixtures, and discuss the different approaches for quantitative proteome analysis. Finally, we briefly discuss novel developments for the analysis of PTMs. Altered levels of PTM, sometimes in the absence of protein expression changes, are often linked to cellular responses and disease states, and the comprehensive analysis of cellular proteome would not be complete without the identification and quantification of the extent of PTMs of proteins.  相似文献   
110.
Plant-based pharmaceuticals potentially offer a cleaner method of producing a protein for drug manufacturing than traditional methods because plants are free of mammalian infectious agents. However, in the open environment they have the potential for intra-and inter-species gene flow, protein exposure to the public and non-target organisms, and they also have the potential to contaminate livestock feed. This study used probabilistic approaches to quantify the non-target organism risks associated with three pharmaceutical proteins produced in field-grown maize. The risk assessment for plant-based pharmaceuticals was conducted for four receptor species used as surrogates for a wider range of species. Body weights and maize consumption rates for each species were modeled from currently available information and used to calculate the exposure based on expression levels of three proteins. The acute dietary exposure for the receptor species was a single-day event in which the total maize consumption came from the recombinant maize. The non-target organism risk assessment demonstrated that risks will vary between species and between proteins, based primarily on differences in toxic endpoint and consumption rates. It also shows the utility of probabilistic, quantitative risk assessment methodologies and the importance of assessing risks from plant-based pharmaceuticals on a case-by-case basis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号