首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   16篇
  国内免费   1篇
  2023年   4篇
  2022年   11篇
  2021年   17篇
  2020年   8篇
  2019年   6篇
  2018年   10篇
  2017年   13篇
  2016年   14篇
  2015年   11篇
  2014年   23篇
  2013年   29篇
  2012年   19篇
  2011年   28篇
  2010年   10篇
  2009年   12篇
  2008年   16篇
  2007年   14篇
  2006年   9篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   4篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
排序方式: 共有324条查询结果,搜索用时 265 毫秒
101.
A combination of stable isotopes (15N) and molecular ecological approaches was used to investigate the vertical distribution and mechanisms of biological N2 production along a transect from the Omani coast to the central–northeastern (NE) Arabian Sea. The Arabian Sea harbors the thickest oxygen minimum zone (OMZ) in the world''s oceans, and is considered to be a major site of oceanic nitrogen (N) loss. Short (<48 h) anoxic incubations with 15N-labeled substrates and functional gene expression analyses showed that the anammox process was highly active, whereas denitrification was hardly detectable in the OMZ over the Omani shelf at least at the time of our sampling. Anammox was coupled with dissimilatory nitrite reduction to ammonium (DNRA), resulting in the production of double-15N-labeled N2 from 15NO2, a signal often taken as the lone evidence for denitrification in the past. Although the central–NE Arabian Sea has conventionally been regarded as the primary N-loss region, low potential N-loss rates at sporadic depths were detected at best. N-loss activities in this region likely experience high spatiotemporal variabilities as linked to the availability of organic matter. Our finding of greater N-loss associated with the more productive Omani upwelling region is consistent with results from other major OMZs. The close reliance of anammox on DNRA also highlights the need to take into account the effects of coupling N-transformations on oceanic N-loss and subsequent N-balance estimates.  相似文献   
102.
Evidence for anaerobic ammonium oxidation in a paddy field was obtained in Southern China using an isotope-pairing technique, quantitative PCR assays and 16S rRNA gene clone libraries, along with nutrient profiles of soil cores. A paddy field with a high load of slurry manure as fertilizer was selected for this study and was shown to contain a high amount of ammonium (6.2–178.8 mg kg−1). The anaerobic oxidation of ammonium (anammox) rates in this paddy soil ranged between 0.5 and 2.9 nmolN per gram of soil per hour in different depths of the soil core, and the specific cellular anammox activity observed in batch tests ranged from 2.9 to 21 fmol per cell per day. Anammox contributed 4–37% to soil N2 production, the remainder being due to denitrification. The 16S rRNA gene sequences of surface soil were closely related to the anammox bacteria ‘Kuenenia'', ‘Anammoxoglobus'' and ‘Jettenia''. Most of the anammox 16S rRNA genes retrieved from the deeper soil were affiliated to ‘Brocadia''. The retrieval of mainly bacterial amoA sequences in the upper part of the paddy soil indicated that nitrifying bacteria may be the major source of nitrite for anammox bacteria in the cultivated horizon. In the deeper oxygen-limited parts, only archaeal amoA sequences were found, indicating that archaea may produce nitrite in this part of the soil. It is estimated that a total loss of 76 g N m−2 per year is linked to anammox in the paddy field.  相似文献   
103.
The fast growth of smart electronics requires novel solutions to power them sustainably. Portable power sources capable of harvesting biomechanical energy are a promising modern approach to reduce battery dependency. Herein, a novel elastic impact‐based nonresonant hybridized generator (EINR‐HG) is reported to effectively harvest biomechanical energy from diverse human activities outdoors. Through the rational integration of a nonlinear electromagnetic generator with two contact‐mode triboelectric nanogenerators, the proposed EINR‐HG generates hybrid electrical output simultaneously under the same mechanical excitations. By introducing a flux‐concentrator with a nanowire‐nanofiber surface modification, significant improvement in the energy harvesting efficiency of the EINR‐HG is achieved. After optimizing using simulations and vibration tests, the as‐fabricated EINR‐HG delivers an outstanding normalized power density of 3.13 mW cm?3 g?2 across a matching resistance of 1.5 kΩ at 6 Hz under 1 g acceleration. Under human motion testing, the EINR‐HG generates an optimal output power of 131.4 mW with horizontal handshaking. With a customized power management circuit, the EINR‐HG serves as a universal power source that successfully drives commercial smart electronics, including smart bands and smartphones. This work shows the massive potential of biomechanical energy‐driven hybridized generators for powering personal electronics and portable healthcare monitoring devices.  相似文献   
104.
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard‐cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar‐phosphorylating enzyme involved in sugar‐sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback‐inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.  相似文献   
105.
In a previous study, we have described oxidative stress during Epstein-Barr virus lytic cycle induction. Oxidative stress was evidenced by the observed high MDA levels and the decreased activities of antioxidant enzymes. We hypothesised that the lower activities of the antioxidant enzymes decrease were the result of either the excessive production of reactive oxygen radical species (ROS) or a negative regulation of the antioxidant enzyme gene expressions. In an attempt to clarify this situation, EBV lytic cycle was induced in Raji cell line by a non-stressing dose of 12-0-tetradecanoylphorbol-13-acetate. BZLF-1, superoxide dismutase, and catalase gene expressions were then analysed using semi-quantitative RT-PCR, simultaneously at a kinetic of 6, 12, 24, 36, and 48?h. ROS production was evaluated by chemiluminescence. A study was conducted to establish whether ROS production, BZLF-1, and the expression of antioxidant genes were inter-correlated. Induction of the lytic cycle resulted in increased expressions of the genes of superoxide dismutase and catalase, which began at 24?h (p?相似文献   
106.
Lindane (gamma-hexachlorocyclohexane, gamma-HCH), a highly persistent organochlorine insecticide is neurotoxic at acute doses and has been reported to induce oxidative stress in cells and tissues. In this study, we investigated the antioxidant property of Nigella sativa seed oil (N.O) and omega-3 polyunsaturated fatty acids (omega3) against gamma-HCH-induced oxidative hepatic and renal damage in male rats serum. Rats were orally given sublethal dose of gamma-HCH (12 mg/kg, 24 h prior to decapitation), while N.O (0.3 ml/kg) and omega3 (20 mg/kg) were given every 48 h for 20 days single or together, or also combined with gamma-HCH. gamma-HCH caused a significant increase in the levels of serum total lipids, cholesterol, and triglycerides by 49, 61 and 30% respectively, while HDL-cholesterol decreased by 45% compared to control group. Pretreatment with omega3 and N.O prior gamma-HCH administration re-established the altered biochemical features and alleviated the harmful effects of gamma-HCH on lipid profile. The concentration of serum total protein and albumin was significantly decreased by 35 and 45% respectively in rats treated with gamma-HCH compared to control. gamma-HCH also caused hepatic and renal damage, as observed from the elevated serum levels of urea, creatinine, total bilirubin and uric acid contents and aminotransferases (AST and ALT), phosphatases (ACP and ALP) and lactate dehydrogenase (LDH) activities. Co-administration of omega3 and N.O reversed the hazardous effects induced by gamma-HCH on the liver and kidney and also protected acetylcholinesterase from the inhibitory action of gamma-HCH as well as suppressed the lipid peroxidation. Thus, the results show that omega3 and N.O might prevent oxidative stress and attenuate the changes in the biochemical parameters induced by gamma-HCH in male rats.  相似文献   
107.
The hydraulic conductivity of the leaf vascular system (Kleaf) is dynamic and decreases rapidly under drought stress, possibly in response to the stress phytohormone ABA, which increases sharply in the xylem sap (ABAxyl) during periods of drought. Vascular bundle‐sheath cells (BSCs; a layer of parenchymatous cells tightly enwrapping the entire leaf vasculature) have been hypothesized to control Kleaf via the specific activity of BSC aquaporins (AQPs). We examined this hypothesis and provide evidence for drought‐induced ABAxyl diminishing BSC osmotic water permeability (Pf) via downregulated activity of their AQPs. ABA fed to the leaf via the xylem (petiole) both decreased Kleaf and led to stomatal closure, replicating the effect of drought. In contrast, smearing ABA on the leaf blade, while also closing stomata, did not decrease Kleaf within 2–3 h of application, demonstrating that Kleaf does not depend entirely on stomatal closure. GFP‐labeled BSCs showed decreased Pf in response to ‘drought’ and ABA treatment, and a reversible decrease with HgCl2 (an AQP blocker). These Pf responses, absent in mesophyll cells, suggest stress‐regulated AQP activity specific to BSCs, and imply a role for these cells in decreasing Kleaf via a reduction in Pf. Our results support the above hypothesis and highlight the BSCs as hitherto overlooked vasculature sensor compartments, extending throughout the leaf and functioning as ‘stress‐regulated valves’ converting vasculature chemical signals (possibly ABAxyl) into leaf hydraulic signals.  相似文献   
108.
109.
The essential oil of Deverra scoparia Coss. & Durieu was investigated for its acaricidal activity against the worldwide pest twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). The essential oil was analyzed by fast gas chromatography (GC) and GC-mass spectrometry. The activities of its individual and blended constituents were determined. Our study showed that female mortality increased with increasing D. scoparia oil concentrations, with LD50 and LD90 values at 1.79 and 3.2 mg liter(-1), respectively. A reduction in fecundity had already been observed for concentrations of 0.064, 0.08, and 0.26 mg liter(-1) D. scoparia essential oil. Ten major components, comprising 98.52% of the total weight, were identified; a-pinene was the most abundant constituent (31.95%) followed by sabinene (17.24%) and delta3-carene (16.85%). The 10 major constituents of D. scoparia oil were individually tested against T. urticae females. The most potent toxicity was found with alpha-pinene, delta3-carene, and terpinen-4-ol. The presence of all constituents together in the artificial mixture caused a significant decrease in the number of eggs laid by females, at 0.26 mg liter(-1) (11 eggs), compared with the control (50 eggs). The toxicity of blends of selected constituents indicated that the presence of all constituents was necessary to reproduce the toxicity level of the natural oil.  相似文献   
110.
Geophysical imaging of root-zone, trunk, and moisture heterogeneity   总被引:4,自引:0,他引:4  
The most significant biotic and abiotic stress agents of water extremity, salinity, and infection lead to wood decay and modifications of moisture and ion content, and density. This strongly influences the (di-)electrical and mechanical properties and justifies the application of geophysical imaging techniques. These are less invasive and have high resolution in contrast to classical methods of destructive, single-point measurements for inspecting stresses in trees and soils. This review presents some in situ and in vivo applications of electric, radar, and seismic methods for studying water status and movement in soils, roots, and tree trunks. The electrical properties of a root-zone are a consequence of their moisture content. Electrical imaging discriminates resistive, woody roots from conductive, soft roots. Both types are recognized by low radar velocities and high attenuation. Single roots can generate diffraction hyperbolas in radargrams. Pedophysical relationships of water content to electrical resistivity and radar velocity are established by diverse infiltration experiments in the field, laboratory, and in the full-scale 'GeoModel' at Kiel University. Subsurface moisture distributions are derived from geophysical attribute models. The ring electrode technique around trunks images the growth ring structure of concentric resistivity, which is inversely proportional to the fluid content. Healthy trees show a central high resistivity within the dry heartwood that strongly decreases towards the peripheral wet sapwood. Observed structural deviations are caused by infection, decay, shooting, or predominant light and/or wind directions. Seismic trunk tomography also differentiates between decayed and healthy woods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号