首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2448篇
  免费   338篇
  国内免费   3篇
  2021年   36篇
  2020年   27篇
  2019年   32篇
  2018年   32篇
  2017年   30篇
  2016年   43篇
  2015年   77篇
  2014年   106篇
  2013年   121篇
  2012年   123篇
  2011年   126篇
  2010年   95篇
  2009年   95篇
  2008年   106篇
  2007年   120篇
  2006年   107篇
  2005年   127篇
  2004年   98篇
  2003年   98篇
  2002年   74篇
  2001年   80篇
  2000年   81篇
  1999年   70篇
  1998年   41篇
  1997年   21篇
  1996年   28篇
  1995年   28篇
  1994年   18篇
  1993年   21篇
  1992年   49篇
  1991年   47篇
  1990年   36篇
  1989年   34篇
  1988年   36篇
  1987年   38篇
  1986年   28篇
  1985年   44篇
  1984年   27篇
  1983年   26篇
  1982年   32篇
  1981年   25篇
  1979年   25篇
  1978年   21篇
  1977年   20篇
  1975年   18篇
  1974年   17篇
  1973年   22篇
  1971年   18篇
  1970年   20篇
  1968年   21篇
排序方式: 共有2789条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
45.
46.
47.
48.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   
49.
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner.  相似文献   
50.
Cell density is known to modify the survival of mammalian cells exposed to elevated temperatures. We have examined the role that cell–cell contact plays in this phenomenon. The formation of cell–cell contact is carried out by cells' junctional complex, i.e., tight junctions, desmosomes, and gap junctions. Lack of formation of tight junctions and desmosomes, or their opening, could interfere with the functions and structures of cell membrane. Membrane damage is at least partially responsible for cell death at elevated temperatures. MDCK cells with high density plated in low calcium medium form confluent monolayers devoid of the formation of tight junctions and desmosomes but quickly assemble them after Ca2+ restoration. We used MDCK cells and the calcium switch technique to investigate effects of cell–cell contact and, independently, of cell density on hyperthermic cell killing. We found that MDCK cells that formed tight junctions and desmosomes were more resistant to hyperthermic treatment than those that did not. Blocking the formation pathway of tight junctions made cells sensitive to heat. Cells growing at lowdensity showed almost the same survival as did cells at high density in the absence of the formation of tight junctions and desmosomes. The results suggest that the formation of tight junctions and desmosomes play a more important role in determining hyperthermic response than does density per se. The formation of tight junctions and desmosomes appears to protect cells modestly against hyperthermic killing. © 1994 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号