全文获取类型
收费全文 | 4175篇 |
免费 | 322篇 |
国内免费 | 1篇 |
专业分类
4498篇 |
出版年
2022年 | 55篇 |
2021年 | 83篇 |
2020年 | 45篇 |
2019年 | 49篇 |
2018年 | 83篇 |
2017年 | 65篇 |
2016年 | 113篇 |
2015年 | 127篇 |
2014年 | 213篇 |
2013年 | 232篇 |
2012年 | 267篇 |
2011年 | 262篇 |
2010年 | 169篇 |
2009年 | 140篇 |
2008年 | 213篇 |
2007年 | 186篇 |
2006年 | 200篇 |
2005年 | 174篇 |
2004年 | 157篇 |
2003年 | 133篇 |
2002年 | 111篇 |
2001年 | 119篇 |
2000年 | 83篇 |
1999年 | 82篇 |
1998年 | 40篇 |
1997年 | 31篇 |
1996年 | 31篇 |
1995年 | 33篇 |
1994年 | 38篇 |
1993年 | 35篇 |
1992年 | 65篇 |
1991年 | 61篇 |
1990年 | 60篇 |
1989年 | 47篇 |
1988年 | 40篇 |
1987年 | 52篇 |
1986年 | 40篇 |
1985年 | 47篇 |
1984年 | 45篇 |
1983年 | 33篇 |
1982年 | 34篇 |
1981年 | 23篇 |
1979年 | 31篇 |
1978年 | 22篇 |
1977年 | 33篇 |
1975年 | 25篇 |
1973年 | 24篇 |
1972年 | 22篇 |
1969年 | 30篇 |
1967年 | 19篇 |
排序方式: 共有4498条查询结果,搜索用时 0 毫秒
111.
Visual stimuli produce waves of activity that propagate across the visual cortex of fresh water turtles. This study used a
large-scale model of the cortex to examine the roles of specific types of cortical neurons in controlling the formation, speed
and duration of these waves. The waves were divided into three components: initial depolarizations, primary propagating waves
and secondary waves. The maximal conductances of each receptor type postsynaptic to each population of neurons in the model
was systematically varied and the speed of primary waves, durations of primary waves and total wave durations were measured.
The analyses indicate that wave formation and speed are controlled principally by feedforward excitation and inhibition, while
wave duration is controlled principally by recurrent excitation and feedback inhibition. 相似文献
112.
Sudipta Hazra Subhalakshmi Ghosh Madhushree Das Sarma Smriti Sharma Mousumi Das Prakash Saudagar Vijay Kumar Prajapati Vikash Kumar Dubey Shyam Sundar Banasri Hazra 《Experimental parasitology》2013
World health organization has called for academic research and development of new chemotherapeutic strategies to overcome the emerging resistance and side effects exhibited by the drugs currently used against leishmaniasis. Diospyrin, a bis-naphthoquinone isolated from Diospyros montana Roxb., and its semi-synthetic derivatives, were reported for inhibitory activity against protozoan parasites including Leishmania. Presently, we have investigated the antileishmanial effect of a di-epoxide derivative of diospyrin (D17), both in vitro and in vivo. Further, the safety profile of D17 was established by testing its toxicity against normal macrophage cells (IC50 ∼ 20.7 μM), and also against normal BALB/c mice in vivo. The compound showed enhanced activity (IC50 ∼ 7.2 μM) as compared to diospyrin (IC50 ∼ 12.6 μM) against Leishmania donovani promastigotes. Again, D17 was tested on L. donovani BHU1216 isolated from a sodium stibogluconate-unresponsive patient, and exhibited selective inhibition of the intracellular amastigotes (IC50 ∼ 0.18 μM). Also, treatment of infected BALB/c mice with D17 at 2 mg/kg/day reduced the hepatic parasite load by about 38%. Subsequently, computational docking studies were undertaken on selected enzymes of trypanothione metabolism, viz. trypanothione reductase (TryR) and ornithine decarboxylase (ODC), followed by the enzyme kinetics, where D17 demonstrated non-competitive inhibition of the L. donovani ODC, but could not inhibit TryR. 相似文献
113.
Diptiman Choudhury Arnab GanguliDebabrata Ghosh Dastidar Bipul R. AcharyaAmlan Das Gopal Chakrabarti 《Biochimie》2013
Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10−7 M−1 s−1 and 4.0 × 10−9 M−1 s−1 for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin–apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α–β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals. 相似文献
114.
Anna Henningham Masaya Yamaguchi Ramy K. Aziz Kirsten Kuipers Cosmo Z. Buffalo Samira Dahesh Biswa Choudhury Jeremy Van Vleet Yuka Yamaguchi Lisa M. Seymour Nouri L. Ben Zakour Lingjun He Helen V. Smith Keith Grimwood Scott A. Beatson Partho Ghosh Mark J. Walker Victor Nizet Jason N. Cole 《The Journal of biological chemistry》2014,289(46):32303-32315
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen. 相似文献
115.
The catalytic activity of the cyclo-oxygenase prostaglandin E2 synthetase complex in subcellular organelles of goat vesicular gland was determined. The enzyme activity was found to be located mostly in the rough endoplasmic reticulum and partly in the nuclear membrane; comparatively very little activity could be detected in the smooth endoplasmic reticulum. There was no detectable activity of the enzyme in the plasma membrane. 相似文献
116.
Ghosh S Ting S Lau H Pulinilkunnil T An D Qi D Abrahani MA Rodrigues B 《Canadian journal of physiology and pharmacology》2004,82(10):879-887
In diabetes, cell death and resultant cardiomyopathy have been linked to oxidative stress and depletion of antioxidants like glutathione (GSH). Although the de novo synthesis and recycling of GSH have been extensively studied in the chronically diabetic heart, their contribution in modulating cardiac oxidative stress in acute diabetes has been largely ignored. Additionally, the possible contribution of cellular efflux in regulating GSH levels during diabetes is unknown. We used streptozotocin to make Wistar rats acutely diabetic and after 4 days examined the different processes that regulate cardiac GSH. Reduction in myocyte GSH in diabetic rats was accompanied by increased oxidative stress, excessive reactive oxygen species, and an elevated apoptotic cell death. The effect on GSH was not associated with any change in either synthesis or recycling, as both gamma-glutamylcysteine synthetase gene expression (responsible for bio syn thesis) and glutathione reductase activity (involved with GSH recycling) remained unchanged. However, gene expression of multidrug resistance protein 1, a transporter implicated in effluxing GSH during oxidative stress, was elevated. GSH conjugate efflux mediated by multidrug resistance protein 1 also increased in diabetic cardiomyocytes, an effect that was blocked using MK-571, a specific inhibitor of this transporter. As MK-571 also decreased oxidative stress in diabetic cardiomyocytes, an important role can be proposed for this transporter in GSH and reactive oxygen species homeostasis in the acutely diabetic heart. 相似文献
117.
Kuntal Dey Tapati Chakraborti Soumitra Roy Biswarup Ghosh Pulak Kar Sajal Chakraborti 《Life sciences》2010,86(13-14):473-481
AimsWe sought to identify, purify and partially characterize a protein inhibitor of Na+/K+-ATPase in cytosol of pulmonary artery smooth muscle.Main methods(i) By spectrophotometric assay, we identified an inhibitor of Na+/K+-ATPase in cytosolic fraction of pulmonary artery smooth muscle; (ii) the inhibitor was purified by a combination of ammonium sulfate precipitation, diethylaminoethyl (DEAE) cellulose chromatography, hydroxyapatite chromatography and gel filtration chromatography; (iii) additionally, we have also purified Na+/K+-ATPase α2β1 and α1β1 isozymes for determining some characteristics of the inhibitor.Key findingsWe identified a novel endogenous protein inhibitor of Na+/K+-ATPase having an apparent mol mass of ~ 70 kDa in the cytosolic fraction of the smooth muscle. The IC50 value of the inhibitor towards the enzyme was determined to be in the nanomolar range. Important characteristics of the inhibitor are as follows: (i) it showed different affinities toward the α2β1 and α1β1 isozymes of the Na+/K+-ATPase; (ii) it interacted reversibly to the E1 site of the enzyme; (iii) the inhibitor blocked the phosphorylated intermediate formation; and (iv) it competitively inhibited the enzyme with respect to ATP. CD studies indicated that the inhibitor causes an alteration of the conformation of the enzyme. The inhibition study also suggested that the DHPC solubilized Na+/K+-ATPase exists as (αβ)2 diprotomer.SignificanceThe inhibitor binds to the Na+/K+-ATPase at a site different from the ouabain binding site. The novelty of the inhibitor is that it acts in an isoform specific manner on the enzyme, where α2 is more sensitive than α1. 相似文献
118.
Barbara Tevelev Andre Chambers Swap Ghosh Ying Zhang Lisa Marzili Jason C. Rouse Shu Han Mark Moffat John J. Scarcelli 《Biotechnology progress》2023,39(2):e3320
Site-specific integration (SSI) cell line systems are gaining popularity for biotherapeutic development and production. Despite the proven advantages for these expression hosts, the SSI system is still susceptible to rare off-target events and potential vector rearrangements. Here we describe the development process of an SSI cell line for production of an IgG1 monoclonal antibody (mAb-086). During cell line generational studies to assess suitability of clone C10 for commercial purposes, restriction fragment lengths of genomic DNA harboring the light chain (LC) were not in agreement with the predicted size. We first confirmed that the SSI landing-pad achieved occupancy of the desired expression plasmid. Additional investigation revealed that random integration had occurred, resulting in the acquisition of a partial copy of the LC and a full-length copy of the heavy chain (HC) at a different locus in the host genome. This off-target event had no impact on the genotypic consistency and phenotypic stability of the cell line, the production process, or the drug substance product quality. Given the genetic, phenotypic, and process consistency of the cell line, clone C10 was deemed suitable as a manufacturing cell line. 相似文献
119.
Borna Ghosh Kenneth A. Satyshur Cynthia Czajkowski 《The Journal of biological chemistry》2013,288(24):17420-17431
General anesthetics exert many of their CNS actions by binding to and modulating membrane-embedded pentameric ligand-gated ion channels (pLGICs). The structural mechanisms underlying how anesthetics modulate pLGIC function remain largely unknown. GLIC, a prokaryotic pLGIC homologue, is inhibited by general anesthetics, suggesting anesthetics stabilize a closed channel state, but in anesthetic-bound GLIC crystal structures the channel appears open. Here, using functional GLIC channels expressed in oocytes, we examined whether propofol induces structural rearrangements in the GLIC transmembrane domain (TMD). Residues in the GLIC TMD that frame intrasubunit and intersubunit water-accessible cavities were individually mutated to cysteine. We measured and compared the rates of modification of the introduced cysteines by sulfhydryl-reactive reagents in the absence and presence of propofol. Propofol slowed the rate of modification of L240C (intersubunit) and increased the rate of modification of T254C (intrasubunit), indicating that propofol binding induces structural rearrangements in these cavities that alter the local environment near these residues. Propofol acceleration of T254C modification suggests that in the resting state propofol does not bind in the TMD intrasubunit cavity as observed in the crystal structure of GLIC with bound propofol (Nury, H., Van Renterghem, C., Weng, Y., Tran, A., Baaden, M., Dufresne, V., Changeux, J. P., Sonner, J. M., Delarue, M., and Corringer, P. J. (2011) Nature 469, 428–431). In silico docking using a GLIC closed channel homology model suggests propofol binds to intersubunit sites in the TMD in the resting state. Propofol-induced motions in the intersubunit cavity were distinct from motions associated with channel activation, indicating propofol stabilizes a novel closed state. 相似文献
120.
Masrure Alam Prosenjit Pyne Aninda Mazumdar Aditya Peketi Wriddhiman Ghosh 《Applied and environmental microbiology》2013,79(14):4455-4464
During chemolithoautotrophic thiosulfate oxidation, the phylogenetically diverged proteobacteria Paracoccus pantotrophus, Tetrathiobacter kashmirensis, and Thiomicrospira crunogena rendered steady enrichment of 34S in the end product sulfate, with overall fractionation ranging between −4.6‰ and +5.8‰. The fractionation kinetics of T. crunogena was essentially similar to that of P. pantotrophus, albeit the former had a slightly higher magnitude and rate of 34S enrichment. In the case of T. kashmirensis, the only significant departure of its fractionation curve from that of P. pantotrophus was observed during the first 36 h of thiosulfate-dependent growth, in the course of which tetrathionate intermediate formation is completed and sulfate production starts. The almost-identical 34S enrichment rates observed during the peak sulfate-producing stage of all three processes indicated the potential involvement of identical S-S bond-breaking enzymes. Concurrent proteomic analyses detected the hydrolase SoxB (which is known to cleave terminal sulfone groups from SoxYZ-bound cysteine S-thiosulfonates, as well as cysteine S-sulfonates, in P. pantotrophus) in the actively sulfate-producing cells of all three species. The inducible expression of soxB during tetrathionate oxidation, as well as the second leg of thiosulfate oxidation, by T. kashmirensis is significant because the current Sox pathway does not accommodate tetrathionate as one of its substrates. Notably, however, no other Sox protein except SoxB could be detected upon matrix-assisted laser desorption ionization mass spectrometry analysis of all such T. kashmirensis proteins as appeared to be thiosulfate inducible in 2-dimensional gel electrophoresis. Instead, several other redox proteins were found to be at least 2-fold overexpressed during thiosulfate- or tetrathionate-dependent growth, thereby indicating that there is more to tetrathionate oxidation than SoxB alone. 相似文献