首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   22篇
  2022年   2篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   4篇
  1974年   5篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1954年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
71.
The EBNA1 protein of Epstein-Barr virus (EBV) mediates the partitioning of EBV episomes and EBV-based plasmids during cell division by a mechanism that appears to involve binding to the cellular EBP2 protein on human chromosomes. We have investigated the ability of EBNA1 and the EBV segregation element (FR) to mediate plasmid partitioning in Saccharomyces cerevisiae. EBNA1 expression alone did not enable the stable segregation of FR-containing plasmids in yeast, but segregation was rescued by human EBP2. The reconstituted segregation system required EBNA1, human EBP2 and the FR element, and functionally replaced a CEN element. An EBP2 binding mutant of EBNA1 and an EBNA1 binding mutant of EBP2 each failed to support FR-plasmid partitioning, indicating that an EBNA1-EBP2 interaction is required. The results provide direct evidence of the role of hEBP2 in EBNA1-mediated segregation and demonstrate that heterologous segregation systems can be reconstituted in yeast.  相似文献   
72.
Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X-ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the beta2-adrenergic G-protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site-directed crosslinking, engineered zinc binding, site-directed spin-labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either "active" or "inactive" restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug-like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation.  相似文献   
73.
The prevalence of diarrhoea in calves was investigated in 8 dairy farms in Mozambique at 4 occasions during 2 consecutive years. A total of 1241 calves up to 6 months of age were reared in the farms, and 63 (5%) of them had signs of diarrhoea. Two farms had an overall higher prevalence (13% and 21%) of diarrhoea. Faecal samples were collected from all diarrhoeal calves (n = 63) and from 330 healthy calves and analysed for Salmonella species, Campylobacter jejuni and enterotoxigenic Escherichia coli (ETEC). Salmonella spp. was isolated in only 2% of all calves. Campylobacter was isolated in 11% of all calves, irrespective of health condition, and was more frequent (25%) in one of the 2 diarrhoeal farms (p = 0.001). 80% of the isolates were identified as C. jejuni. No ETEC strains were detected among the 55 tested strains from diarrhoeal calves, but 22/55 (40%) strains from diarrhoeal calves and 14/88 (16%) strains from healthy calves carried the K99 adhesin (p = 0.001). 6,757 E. coli isolates were typed with a biochemical fingerprinting method (the PhenePlate?) giving the same E. coli diversity in healthy and diarrhoeal calves. Thus it was concluded: i) the overall prevalence of diarrhoea was low, but 2 farms had a higher prevalence that could be due to an outbreak situation, ii) Salmonella did not seem to be associated with diarrhoea, iii) Campylobacter jejuni was common at one of the 2 diarrhoeal farms and iv) ETEC strains were not found, but K99 antigen was more prevalent in E. coli strains from diarrhoeal calves than from healthy, as well as more prevalent in one diarrhoeal farm.  相似文献   
74.
Bacterial infection a leading cause of death among patients with stroke, with elderly patients often presenting with more debilitating outcomes. The findings from our retrospective study, supported by previous clinical reports, showed that increasing age is an early predictor for developing fatal infectious complications after stroke. However, exactly how and why older individuals are more susceptible to infection after stroke remains unclear. Using a mouse model of transient ischaemic stroke, we demonstrate that older mice (>12 months) present with greater spontaneous bacterial lung infections compared to their younger counterparts (7–10 weeks) after stroke. Importantly, we provide evidence that older poststroke mice exhibited elevated intestinal inflammation and disruption in gut barriers critical in maintaining colonic integrity following stroke, including reduced expression of mucin and tight junction proteins. In addition, our data support the notion that the localized pro‐inflammatory microenvironment driven by increased tumour necrosis factor‐α production in the colon of older mice facilitates the translocation and dissemination of orally inoculated bacteria to the lung following stroke onset. Therefore, findings of this study demonstrate that exacerbated dysfunction of the intestinal barrier in advanced age promotes translocation of gut‐derived bacteria and contributes to the increased risk to poststroke bacterial infection.  相似文献   
75.
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes.  相似文献   
76.
Objective means are needed to predict and assess clinical response in patients treated for invasive aspergillosis (IA). We examined whether early changes in serum galactomannan (GM) and/or β-D-glucan (BDG) can predict clinical outcomes. Patients with proven or probable IA were prospectively enrolled, and serial GM and BDG levels and GM optical density indices (GMI) were calculated twice weekly for 6 weeks following initiation of standard-of-care antifungal therapy. Changes in these biomarkers during the first 2 and 6 weeks of treatment were analyzed for associations with clinical response and survival at weeks 6 and 12. Among 47 patients with IA, 53.2% (25/47) and 65.9% (27/41) had clinical response by weeks 6 and 12, respectively. Changes in biomarkers during the first 2 weeks were associated with clinical response at 6 weeks (GMI, P = 0.03) and 12 weeks (GM+BDG composite, P = 0.05; GM, P = 0.04; GMI, P = 0.02). Changes in biomarkers during the first 6 weeks were also associated with clinical response at 6 weeks (GM, P = 0.05; GMI, P = 0.03) and 12 weeks (BDG+GM, P = 0.02; GM, P = 0.02; GMI, P = 0.01). Overall survival rates at 6 weeks and 12 weeks were 87.2% (41/47) and 79.1% (34/43), respectively. Decreasing biomarkers in the first 2 weeks were associated with survival at 6 weeks (BDG+GM, P = 0.03; BDG, P = 0.01; GM, P = 0.03) and at 12 weeks (BDG+GM, P = 0.01; BDG, P = 0.03; GM, P = 0.01; GMI, P = 0.007). Similar correlations occurred for biomarkers measured over 6 weeks. Patients with negative baseline GMI and/or persistently negative GMI during the first 2 weeks were more likely to have CR and survival. These results suggest that changes of biomarkers may be informative to predict and/or assess response to therapy and survival in patients treated for IA.  相似文献   
77.
An expression plasmid encoding the extracellular portion of the human tumor necrosis factor (TNF) type 1 receptor (TNF-R1) was constructed and used to generate a stable cell line secreting soluble TNF-R1 (sTNF-R1). The sTNF-R1 was purified, and its biochemical properties and its interactions with human TNF-alpha were examined. SDS-PAGE resolved the purified sTNF-R1 into three bands of approximate Mr 24,200, 28,200, and 32,800. Sedimentation equilibrium analysis gave a molecular weight of 25,000 for sTNF-R1 whereas the molecular weight obtained by gel filtration chromatography was approximately 55,000-60,000. Scatchard analysis of [125I]TNF-alpha binding to sTNF-R1 revealed high-affinity binding (Kd = 93 pM), comparable to that observed for the intact receptor on whole cells. Competitive binding experiments showed that sTNF-R1 has a 50-60-fold higher affinity for TNF-alpha than for TNF-beta, in contrast to the equal affinities of TNF-alpha and TNF-beta for the full-length TNF-R1 transiently expressed in mammalian cells. The sTNF-R1 was found to block the cytotoxicity of TNF-alpha and TNF-beta on a murine L-M cell assay. The sizes of the sTNF-R1.TNF-alpha complex determined by gel filtration chromatography and sedimentation equilibrium were approximately 141 and 115 kDa, respectively. The stoichiometry of the complex was examined by Scatchard analysis, size-exclusion chromatography, HPLC separation, amino acid composition, sequence analysis, and sedimentation equilibrium. The data from these studies suggest that at least two molecules of sTNF-R1 can bind to a single TNF-alpha trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
78.
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein–protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein–protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody–antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.  相似文献   
79.

Background

Legionnaires’ disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires’ disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates.

Results

Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila.

Conclusions

Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires’ disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0504-1) contains supplementary material, which is available to authorized users.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号