首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   142篇
  2021年   9篇
  2020年   4篇
  2019年   5篇
  2018年   5篇
  2017年   9篇
  2016年   16篇
  2015年   16篇
  2014年   24篇
  2013年   29篇
  2012年   32篇
  2011年   33篇
  2010年   19篇
  2009年   28篇
  2008年   29篇
  2007年   35篇
  2006年   38篇
  2005年   30篇
  2004年   30篇
  2003年   37篇
  2002年   36篇
  2001年   35篇
  2000年   19篇
  1999年   22篇
  1998年   22篇
  1997年   16篇
  1996年   13篇
  1995年   19篇
  1994年   9篇
  1993年   14篇
  1992年   21篇
  1991年   10篇
  1990年   21篇
  1989年   15篇
  1988年   15篇
  1987年   16篇
  1986年   18篇
  1985年   21篇
  1984年   7篇
  1983年   11篇
  1982年   8篇
  1981年   9篇
  1980年   5篇
  1979年   12篇
  1977年   13篇
  1976年   5篇
  1975年   13篇
  1973年   4篇
  1970年   7篇
  1949年   3篇
  1934年   3篇
排序方式: 共有912条查询结果,搜索用时 31 毫秒
81.
To obtain electrophysiological recordings in brain slices, sophisticated and expensive pieces of equipment can be used. However, costly microscope equipment with infrared differential interference contrast optics is not always necessary or even desirable. For instance, obtaining a randomized unbiased sample in a given preparation would be better accomplished if cells were not directly visualized before recording. In addition, some preparations require thick slices, and direct visualization is not possible. Here we describe a protocol for the 'blind patch clamp method' that we developed several years ago to perform electrophysiological recordings in mammalian brain slices using a standard patch clamp amplifier, dissecting microscope and recording chamber. Overall, it takes approximately 3-4 h to set up this procedure.  相似文献   
82.
High-resolution genetic maps are required for mapping complex traits and for the study of recombination. We report the highest density genetic map yet created for any organism, except humans. Using more than 10,000 single nucleotide polymorphisms evenly spaced across the mouse genome, we have constructed genetic maps for both outbred and inbred mice, and separately for males and females. Recombination rates are highly correlated in outbred and inbred mice, but show relatively low correlation between males and females. Differences between male and female recombination maps and the sequence features associated with recombination are strikingly similar to those observed in humans. Genetic maps are available from http://gscan.well.ox.ac.uk/#genetic_map and as supporting information to this publication.  相似文献   
83.
N-ethyl-N-nitrosourea (ENU) is a widely used mutagen in genotypic and phenotypic screens aimed at elucidating gene function. The high rate at which ENU induces point mutations raises the possibility that an observed phenotype may be to the result of another unidentified linked mutation. This article presents methods for estimating the probability of additional linked coding mutations (1) in a given region of DNA using both Poisson and Bayesian models and in (2) an F(1) animal exposed to ENU that has undergone b number of backcrosses. Applying these methods to the mouse data set of Quwailid et al., we estimate that the probability that a confounding mutation is linked to a cloned mutation when the candidate region is 5 Mb is very slim (p < 0.002). Where mutants are identified by genotypic methods, we show that backcrossing in the absence of marker-assisted selection is an inefficient means of eliminating linked confounding mutations.  相似文献   
84.
Phylogenetic analysis was used to compare 16S rRNA sequences from 19 cultured human gut strains of Roseburia and Eubacterium rectale with 356 related sequences derived from clone libraries. The cultured strains were found to represent five of the six phylotypes identified. A new oligonucleotide probe, Rrec584, and the previous group probe Rint623, when used in conjunction with a new helper oligonucleotide, each recognized an average of 7% of bacteria detected by the eubacterial probe Eub338 in feces from 10 healthy volunteers. Most of the diversity within this important group of butyrate-producing gut bacteria can apparently be retrieved through cultivation.  相似文献   
85.
Myosin binding protein-C (MyBP-C) is a thick-filament protein whose precise function within the sarcomere is not known. However, recent evidence from cMyBP-C knock-out mice that lack MyBP-C in the heart suggest that cMyBP-C normally slows cross-bridge cycling rates and reduces myocyte power output. To investigate possible mechanisms by which cMyBP-C limits cross-bridge cycling kinetics we assessed effects of recombinant N-terminal domains of MyBP-C on the ability of heavy meromyosin (HMM) to support movement of actin filaments using in vitro motility assays. Here we show that N-terminal domains of cMyBP-C containing the MyBP-C "motif," a sequence of approximately 110 amino acids, which is conserved across all MyBP-C isoforms, reduced actin filament velocity under conditions where filaments are maximally activated (i.e. either in the absence of thin filament regulatory proteins or in the presence of troponin and tropomyosin and high [Ca2+]). By contrast, under conditions where thin filament sliding speed is submaximal (i.e. in the presence of troponin and tropomyosin and low [Ca2+]), proteins containing the motif increased filament speed. Recombinant N-terminal proteins also bound to F-actin and inhibited acto-HMM ATPase rates in solution. The results suggest that N-terminal domains of MyBP-C slow cross-bridge cycling kinetics by reducing rates of cross-bridge detachment.  相似文献   
86.
The rumen bacterium Pseudobutyrivibrio xylanivorans Mz5T has a potent xylanolytic enzyme system. A small native peptide (approximately 30-kDa, designated Xyn11A) from the bacterium was first isolated and characterized by Edman degradation. The gene coding for Xyn11A was identified using PCR amplification with consensus primers. It was then fully sequenced to reveal an open reading frame of 1809 bp. The predicted N-terminal domain exhibited xylanolytic activity and was classed to the family 11 of glycosyl hydrolases; it is followed by a region with homology to a family 6 cellulose binding module. The C-terminal domain codes for a putative NodB-like polysaccharide deacetylase which is predicted to be an acetyl esterase implicated in debranching activity in the xylan backbone. As similar domain organization was also found in several other xylanases from a diverse range of bacteria, a common ancestor of such a xylanase is considered to be present and spread, possibly by horizontal gene transfer, to other microorganisms from different ecological niches.  相似文献   
87.
Dietary carbohydrates have the potential to influence diverse functional groups of bacteria within the human large intestine. Of 12 Bifidobacterium strains of human gut origin from seven species tested, four grew in pure culture on starch and nine on fructo-oligosaccharides. The potential for metabolic cross-feeding between Bifidobacterium adolescentis and lactate-utilizing, butyrate-producing Firmicute bacteria related to Eubacterium hallii and Anaerostipes caccae was investigated in vitro. E. hallii L2-7 and A. caccae L1-92 failed to grow on starch in pure culture, but in coculture with B. adolescentis L2-32 butyrate was formed, indicating cross-feeding of metabolites to the lactate utilizers. Studies with [13C]lactate confirmed carbon flow from lactate, via acetyl coenzyme A, to butyrate both in pure cultures of E. hallii and in cocultures with B. adolescentis. Similar results were obtained in cocultures involving B. adolescentis DSM 20083 with fructo-oligosaccharides as the substrate. Butyrate formation was also stimulated, however, in cocultures of B. adolescentis L2-32 grown on starch or fructo-oligosaccharides with Roseburia sp. strain A2-183, which produces butyrate but does not utilize lactate. This is probably a consequence of the release by B. adolescentis of oligosaccharides that are available to Roseburia sp. strain A2-183. We conclude that two distinct mechanisms of metabolic cross-feeding between B. adolescentis and butyrate-forming bacteria may operate in gut ecosystems, one due to consumption of fermentation end products (lactate and acetate) and the other due to cross-feeding of partial breakdown products from complex substrates.  相似文献   
88.
89.
90.
Significant increases in skin wound healing rates occur by reducing connexin-mediated communication (CMC). Gap27, a connexin (Cx) mimetic peptide targeted to the second extracellular loop of Cx43, which inhibits CMC, increases migration of human keratinocytes and dermal fibroblasts. To examine the efficacy of Gap27 in a hyperglycemic and hyperinsulinemic in vitro environment, cell migration, gap junction, and Cx hemichannel functionality and cell-substrate adhesion assays were performed on human dermal fibroblasts and diabetic fibroblast and keratinocytes. To investigate fibroblast genes involved in these processes, extra-cellular matrix (ECM) and adhesion gene expression was determined with a PCR array. Gap27 increased fibroblast migration in both euglycemia/euinsulinemia and hyperglycemia/hyperinsulinemia, and influenced migration in diabetic keratinocytes. Hyperglycemia/hyperinsulinemia reduced gap junction coupling in fibroblasts and Gap27 reduced CMC and cell adhesion to substrata in fibroblasts cultured in high glucose. Migrating dermal fibroblast ECM and cell adhesion genes were found to be differentially regulated by Gap27 in euglycemia and hyperglycemia. The PCR array showed that Gap27 upregulated 34 genes and downregulated 1 gene in euglycemic migrating fibroblasts. By contrast in hyperglycemia, Gap27 upregulated 1 gene and downregulated 9 genes. In euglycemic conditions, Gap27 induced upregulation of genes associated with ECM remodeling, whereas in hyperglycemia, ECM component genes were downregulated by Gap27. Thus, Gap27 improves cell migration during scrape-wound repair in hyperglycemia/hyperinsulinemia conditions in vitro, although migration of diabetic cells is less influenced. Our results suggest that this increase in motility may occur by decreasing gap junction and hemichannel activity and altering gene expression in the adhesion and ECM pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号