首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   8篇
  412篇
  2013年   11篇
  2012年   9篇
  2011年   12篇
  2010年   22篇
  2009年   22篇
  2008年   13篇
  2007年   30篇
  2006年   22篇
  2005年   15篇
  2004年   12篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   10篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   8篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   8篇
  1989年   7篇
  1988年   3篇
  1987年   3篇
  1985年   4篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1975年   5篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1969年   3篇
  1959年   5篇
  1958年   9篇
  1957年   8篇
  1956年   16篇
  1955年   11篇
  1954年   7篇
  1953年   8篇
  1952年   4篇
  1951年   5篇
  1950年   5篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
21.
We investigated the interaction of rhizospheric nitric oxide (NO) concentration (i.e. low, ambient or high) and soil nitrogen (N) availability (i.e. low or high) with organic and inorganic N uptake by fine roots of Pinus sylvestris L. seedlings by 15N feeding experiments under controlled conditions. N metabolites in fine roots were analysed to link N uptake to N nutrition. NO affected N uptake depending on N source and soil N availability. The suppression of nitrate uptake in the presence of ammonium and glutamine was overruled by high NO. The effects of NO on N uptake with increasing N availability showed different patterns: (1) increasing N uptake regardless of NO concentration (i.e. ammonium); (2) increasing N uptake only with high NO concentration (i.e. nitrate and arginine); and (3) decreasing N uptake (i.e. glutamine). At low N availability and high NO nitrate accumulated in the roots indicating insufficient substrates for nitrate reduction or its storage in root vacuoles. Individual amino acid concentrations were negatively affected with increasing NO (i.e. asparagine and glutamine with low N availability, serine and proline with high N availability). In conclusion, this study provides first evidence that NO affects N uptake and metabolism in a conifer.  相似文献   
22.
  • 1 Despite significant concern about drought impacts in Australia, there have been no broad‐scale studies of drought effects on river health. A severe and prolonged drought has been acting on many streams in south eastern Australia over the past decade. EPA Victoria has undertaken rapid bioassessment (RBA) of over 250 stream reference sites since 1990, providing an opportunity for a before‐after‐control‐impact investigation of drought related changes to macroinvertebrate indices and water quality. This study uses data from 1990 to 2004 to critically evaluate the effectiveness of using RBA methods and indices, which were designed for assessment of human impacts, for monitoring streams during drought.
  • 2 Reference stream sites across Victoria (those with minimal anthropogenic disturbances and repeatedly sampled) were classified as being ‘in drought’ or ‘not in drought’ using the Bureau of Meteorology’s rainfall deficiency definition. Four biological indices (SIGNAL, EPT, Family Richness and AUSRIVAS) were calculated for combined autumn and spring samples for edge and riffle habitats for the selected sites.
  • 3 General linear models and paired t‐tests were used to detect drought related changes to index and water quality values at state‐wide and bioregional scales. Changes in taxa constancy were examined to determine which taxa were sensitive to or benefited from drought conditions. Frequency of site failure against biological objectives specified in the State Environment Protection Policy (Waters of Victoria) (herein termed ‘SEPP WoV’) before and during drought was also examined to detect changes in a management context.
  • 4 Few significant changes in index values were detected for riffle habitat samples. Rates of failure against biological objectives were similar before and during drought for riffle samples. In contrast, edge habitat AUSRIVAS and SIGNAL scores were significantly reduced at the state‐wide scale and most indices showed significant declines in the lower altitude forests, and foothills and coastal plains bioregions.
  • 5 Generally, more pollution tolerant, lentic taxa replaced sensitive and flow‐requiring taxa in edge samples during drought. In contrast, there were few reductions in the taxa of riffle samples during drought. However, many pool preferring, but pollution sensitive taxa occurred more frequently in riffle areas. Hence, the riffle community began to resemble that of pools and edges. This was attributed to decreased flow and increased ‘lentic’ habitat opportunities in riffles.
  • 6 Detection of a drought effect was confined to the edge habitat and site failure could be assigned to drought and anthropogenic impacts, in conjunction or alone. The riffle sampling protocol was resistant to detection of drought effects as samples were only taken when sufficient water was present within this habitat. Therefore, biological changes at sites not meeting policy objectives for riffle habitats can be attributed to anthropogenic rather than drought impacts.
  相似文献   
23.
24.
25.
26.
SUMMARY. 1. Micro-arthropods were sampled seasonally (January, May, August and October) during 1986 from ten, stony riffle sites on streams in the Ashdown Forest of southern England, using both standard benthic and interstitial samplers.
2. Total densities peaked at most sites in summer. Species richness reached a maximum at acid sites in summer but at cireumneutral sites in autumn, when Hydrachnellae and Cladocera were particularly species rich.
3. Individual species showed no obvious differences in seasonally between sites; the majority peaking in summer or autumn, regardless of pH. However, cyclopoid copepods were particularly numerous at acid sites in summer, a pattern not observed at circumneutral sites.
4. Multivariate ordination and classification of data sets from the separate seasons, and all four seasons combined, showed that mean site pH, conductivity, and aluminium and calcium concentrations were the most important variables explaining between-site variation in species composition. This clear distinction between the community structure at acidic and circumneutral sites was evident in all seasons except winter. Species composition was also more predictable throughout the year at low-pH sites.
5. A number of species were taken consistently in interstitial samples and the cyclopoids Diacydops languidus and D. languidoides were restricted to the hyporheos at circumneutral sites. The similar faunal composition of the hyporheos and the epibenthos indicated that the separation of these communities was not well defined in Ashdown Forest streams.  相似文献   
27.
28.
29.
Atmospheric nitrogen (N) deposition has been identified as a major threat to biodiversity, but field surveys of its effects have rarely focussed on sites which are actively managed to maintain characteristic species. We analysed permanent quadrat data from 106 plots in nature reserves on calcareous grassland sites in the United Kingdom collected during a survey between 1990 and 1993 and compared the data with the results from resurvey of 48 of these plots between 2006 and 2009. N deposition showed no significant spatial association with species richness, species diversity, or the frequency of species adapted to low nutrient conditions in the 1990–1993 dataset. However, temporal analysis showed that N deposition was significantly associated with changes in Shannon diversity and evenness. In plots with high rates of N deposition, there was a decrease in species diversity and evenness, a decline in the frequency of characteristic calcareous grassland species, and a lower number of rare and scarce species. As all sites had active management to maintain a high diversity and characteristic species, our results imply that even focussed management on nature conservation objectives cannot prevent adverse effects of high rates of N deposition. Structural equation modelling was used to compare different causal mechanisms to explain the observed effects. For change in Shannon diversity, direct effects of N deposition were the dominant mechanism and there was an independent effect of change in grazing intensity. In contrast, for change in herb species number, indirect effects on soil acidity, linked to both N and S deposition, were more important than direct effects of N deposition.  相似文献   
30.
Benthic macrofauna can influence inputs and transformations of energy and matter in estuaries, affecting both the stocks of vital materials (e.g. carbon, oxygen) and the rates of key processes (e.g. organic matter decomposition, nutrient uptake). Although a number of studies have identified shifts in functional groups or biological traits in relation to anthropogenic stressors, there have been few field‐based assessments of changes in functioning associated with stress gradients. We used a comparative experimental approach to investigate functioning on two sandflats with differing exposures to urban contaminants. Apart from significant differences in sediment contaminant concentrations (43.2 ± 1.8 mg kg?1 Zn and 15.6 ± 0.9 mg kg?1 Pb at the Pollen site; 17.7 ± 0.7 mg kg?1 Zn and 7.9 ± 0.9 mg kg?1 Pb at the Waiheke site), the two sandflats were readily comparable: both had similar sediment grain size distributions and were dominated by the same macrofaunal species; and both were in non‐eutrophic New Zealand marine reserves with low ambient sediment organic matter content. To better understand the effects of contaminants on biologically mediated transformations of organic matter into inorganic nutrients, we manipulated sediment organic matter content and macrofaunal abundance in standardized treatments at each site. Fluxes of oxygen and ammonium, which are linked to key sandflat processes such as organic matter decomposition and benthic photosynthesis, were measured as response variables 1 week after the experimental manipulations. We predicted more efficient organic matter processing on the uncontaminated flat and thus expected to see elevated ammonium efflux in response to organic enrichment treatments at this site. Higher rates of benthic photosynthesis were predicted for plots with higher ammonium efflux, as ammonium is a readily utilizable form of limiting inorganic nitrogen. We documented significant positive relationships between ammonium uptake and benthic primary production on the uncontaminated flat, but weaker/insignificant relationships at the contaminated site. Our data were consistent with theories of increased variability and a decoupling of system processes with increasing amounts of stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号