首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11519篇
  免费   1241篇
  国内免费   3502篇
  16262篇
  2024年   86篇
  2023年   276篇
  2022年   548篇
  2021年   671篇
  2020年   562篇
  2019年   669篇
  2018年   563篇
  2017年   479篇
  2016年   502篇
  2015年   695篇
  2014年   918篇
  2013年   919篇
  2012年   1156篇
  2011年   1063篇
  2010年   772篇
  2009年   771篇
  2008年   805篇
  2007年   771篇
  2006年   676篇
  2005年   609篇
  2004年   463篇
  2003年   475篇
  2002年   346篇
  2001年   311篇
  2000年   261篇
  1999年   184篇
  1998年   116篇
  1997年   83篇
  1996年   90篇
  1995年   68篇
  1994年   62篇
  1993年   44篇
  1992年   38篇
  1991年   44篇
  1990年   28篇
  1989年   28篇
  1988年   19篇
  1987年   27篇
  1986年   10篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   18篇
  1981年   7篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1959年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
One N-confused porphyrin derivative was prepared and its first observation that it could stabilize G-quadruplex and possessed high selectivity over duplex DNA was made, furthermore, it was also proved to possess the capacity to induce a structural transition from the antiparallel to the mixed-type hybrid G-quadruplex structure.  相似文献   
992.
建立重组人睫状神经营养因子(recombinant human ciliary neurotrophic factor,rhCNTF)的肽图分析方法,用于rh-CNTF的质量控制。胰蛋白酶对rhCNTF进行酶切后,利用RP-HPLC方法对酶切液进行分析,以获得胰蛋白酶切最佳条件及色谱条件,并对连续3批样品进行分析。rhCNTF的胰蛋白酶最佳酶切条件为37℃酶切24h,以A(0.1%TFA-H2O)、B(0.1%TFA-CH3CN)为流动相,采用梯度洗脱的方法对酶切液进行分析,结果连续3批rhCNTF制备产品的肽图完全一致,且其检出峰数目与理论推测值相符。3批产品肽图的一致性为rhCNTF产品的结构同一性提供了有利证据,同时,建立了rhCNTF产品质量控制的一项指标。  相似文献   
993.
氯化苦咪酸(TNCB)是诱导接触性超敏反应(CHS)实验模型的常用试剂,IL-17参与CHS的致病过程。利用TNCB致敏C57BL/6小鼠,4d后无菌分离淋巴结细胞。同时制备并体外活化同源小鼠成熟骨髓来源的肥大细胞(BMMC),成熟的BMMC具有肥大细胞特异性表型(FcεRI+/c-kit+),活化后可分泌TNF-α和IL-6等生物活性介质。在抗原提呈细胞存在下,活化的BMMC与淋巴结细胞体外共同培养72h,结果显示,与未致敏淋巴细胞共同培养组相比,BMMC与TNCB致敏淋巴细胞的共同培养上清中IL-17分泌水平显著增高(P0.01)。由此提示,活化的肥大细胞通过释放生物活性介质,促进TNCB致敏淋巴细胞IL-17的分泌。  相似文献   
994.
周期节律是由内在时钟系统介导的多重生物过程的周期循环.周期节律系统是由位于大脑的视神经交叉上核的中央时钟系统和位于外周的几乎存在于所有细胞的外周时钟系统组成的.中央时钟与外周时钟都能够对生物体的生理过程进行调控,如激素的分泌、能量代谢、细胞增殖、DNA损伤修复等.而周期节律基因的表达失调,对其下游靶基因包括细胞周期相关基因的表达,以及细胞抗凋亡能力等产生重要的影响.而这一结果会导致细胞增殖加速及基因组不稳定,并可能促进肿瘤的发生.许多实验证据表明,肿瘤是一种节律相关的生理失调,在许多肿瘤中都发现周期节律遭到破坏,如乳腺癌、前列腺癌、子宫内膜癌等.本文将从周期节律对细胞周期进程及对细胞DNA损伤修复的影响来讨论分子水平上细胞的周期节律与肿瘤发生发展的关系.  相似文献   
995.
996.
Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation. We have identified AR from a primitive vertebrate with a sex reversal characteristic, the rice field eel. AR of this species (eAR) is distinct from human AR, especially in the ligand binding domain (LBD), and its expression in gonads shows an increasing tendency during gonadal transformation from ovary via ovotestis to testis. eAR has a restricted androgen-dependent transactivation function after a nuclear translocation upon dihydrotestosterone exposure. A functional nuclear localization signal was further identified in the DNA binding domain and hinge region. Although nuclear export is CRM1-independent, eAR has a novel nuclear export signal, which is negatively charged, indicating that a nuclear export pathway may be mediated by electrostatic interaction. Further, our studies have identified critical sequences for ligand binding in the C terminus. A structure of three α-helices in the LBD has been conserved from eels to humans during vertebrate evolution, despite a distinct amino acid sequence. Mutation analysis confirmed that the LBD is essential for dihydrotestosterone-induced nuclear import of eAR and following transactivation function in the nucleus. In addition, eAR interacts with both Sox9a1 and Sox9a2, and their interaction regulates transactivation of eAR. Our data suggest that the primitive species conserves and especially acquires key novel domains, the nuclear export signal and LBD, for the eAR function in spite of a rapid sequence evolution.  相似文献   
997.
Trabecular architecture plays a major role in bone mechanics. Osteoporosis leads to a transition from a plate-like to a more rod-like trabecular morphology, which may contribute to fracture risk beyond that predicted by changes in density. In this study, microstructural finite element analysis results were analyzed using individual trabeculae segmentation (ITS) to identify the type and orientation of trabeculae where tissue yielded during compressive overloads in two orthogonal directions. For both apparent loading conditions, most of the yielded tissue was found in longitudinally oriented plates. However, the primary loading mode of yielded trabeculae was axial compression with superposed bending for on-axis loading in contrast to bending for transverse loading. For either loading direction, most plate-like trabeculae yielded in the same loading mode, regardless of their orientation. In contrast, rods oriented parallel to the loading axis yielded in compression, while rods oblique or perpendicular to the loading axis yielded in combined bending and tension. The predominance of tissue yielding in plates during both on-axis and transverse overloading explains why on-axis overloading is detrimental to the off-axis mechanical properties. At the same time, a large fraction of the tissue in rod-like trabeculae parallel to the loading direction yielded in both on-axis and transverse loading. Hence, rods may be more likely to be damaged and potentially resorbed by damage mediated remodeling.  相似文献   
998.
The objectives of this study were to investigate the early response to mechanical stress in neonatal rat mandibular chondrocytes by proteomic analysis. To evaluate its molecular mechanism, chondrocytes were isolated and cultured in vitro, then loaded mechanical stress by four‐point bending system on different patterns. Morphological observation, flow cytometric analysis, and MTT assays indicated that 4,000 µstrain loading for 60 min was an appropriate mechanical stimulus for the following proteome analysis, which produced a transient but obvious inhibitory effect on the cell cycle. Therefore, we took a proteomic approach to identify significantly differential expression proteins in chondrocytes under this mechanical stress. Using 2‐DE and MALDI‐TOF, we identified seven differentially expressed proteins including the MAPK pathway inhibitor RKIP, cytoskeleton proteins, actin and vimentin, and other selected proteins. Some differentially expressed proteins were validated by both Western blot analysis and fluorescent staining of cytoskeleton at different loading times. The vimentin and RKIP responsive expression were also proven in vivo in oral orthopedic treatment rats, which was in line with the result in vitro. The histological changes in cartilage also showed the inhibition effect. Furthermore, the expressional level of phosphorylated ERK was increased, which demonstrates the changes in MAPK activity. Taken together, these data indicate that mechanical stress resulted in vimentin expression changes first and then led to the subsequent changes in actin expression, MAPK pathway regulated by RKIP and heat shock protein GRP75. All those changes contributed to the cytoskeleton remolding and cell cycle inhibition, finally led to condylar remodeling. J. Cell. Physiol. 223:610–622, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
999.
Embryonic stem cells (ESCs) possess two unique characteristics: self‐renewal and pluripotency. In this study, roles of voltage‐gated potassium channels (Kv) in maintaining mouse (m) ESC characteristics were investigated. Tetraethylammonium (TEA+), a Kv blocker, attenuated cell proliferation in a concentration‐dependent manner. Possible reasons for this attenuation, including cytotoxicity, cell cycle arrest and differentiation, were examined. Blocking Kv did not change the viability of mESCs. Interestingly, Kv inhibition increased the proportion of cells in G0/G1 phase and decreased that in S phase. This change in cell cycle distribution can be attributed to cell cycle arrest or differentiation. Loss of pluripotency as determined at both molecular and functional levels was detected in mESCs with Kv blockade, indicating that Kv inhibition in undifferentiated mESCs directs cells to differentiate instead of to self‐renew and progress through the cell cycle. Membrane potential measurement revealed that Kv blockade led to depolarization, consistent with the role of Kv as the key determinant of membrane potential. The present results suggest that membrane potential changes may act as a “switch” for ESCs to decide whether to proliferate or to differentiate: hyperpolarization at G1 phase would favor ESCs to enter S phase while depolarization would favor ESCs to differentiate. Consistent with this notion, S‐phase‐synchronized mESCs were found to be more hyperpolarized than G0/G1‐phase‐synchronized mESCs. Moreover, when mESCs differentiated, the differentiation derivatives depolarized at the initial stage of differentiation. This investigation is the first study to provide evidence that Kv and membrane potential affect the fate determination of ESCs. J. Cell. Physiol. 224:165–177, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   
1000.
A mass mortality of clam, Meretrix meretrix, occurred in Jiangsu Province of China in the late September of 2007. Of the isolates obtained from the diseased clams, MM21 had the strongest virulence to the clam in the virulence test, with a LD50 value of ∼6 × 106 CFU ml−1. MM21 was identified as Vibrio parahaemolyticus by the VITEK 2 Compact system and 16S rDNA sequencing. Detection of virulence-associated genes by PCR indicated that MM21 was positive for toxR and tlh, and negative for tdh. Compared with control group, histiocytes from MM21-infected clams displayed a variety of cytopathological changes by transmission electron microscopy examination, which included increased lipid droplets in hepatocytes, deposition of granules in the mantle, excessive secretion in the gill. The results of our study suggested that MM21 may have been an etiological element in the mass mortalities of hard clam (M. meretrix) in Jiangsu Province of China in 2007.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号