首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10145篇
  免费   783篇
  国内免费   2篇
  10930篇
  2023年   35篇
  2022年   130篇
  2021年   208篇
  2020年   126篇
  2019年   179篇
  2018年   288篇
  2017年   220篇
  2016年   361篇
  2015年   585篇
  2014年   662篇
  2013年   683篇
  2012年   921篇
  2011年   845篇
  2010年   554篇
  2009年   470篇
  2008年   647篇
  2007年   541篇
  2006年   485篇
  2005年   468篇
  2004年   403篇
  2003年   343篇
  2002年   296篇
  2001年   196篇
  2000年   186篇
  1999年   136篇
  1998年   66篇
  1997年   45篇
  1996年   28篇
  1995年   47篇
  1994年   40篇
  1993年   31篇
  1992年   57篇
  1991年   51篇
  1990年   62篇
  1989年   42篇
  1988年   35篇
  1987年   33篇
  1986年   30篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   23篇
  1979年   21篇
  1977年   16篇
  1974年   18篇
  1973年   19篇
  1971年   24篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Kim SK  Seo JM  Jung YS  Kwak HE  Kim YC 《Amino acids》2003,24(1-2):103-110
Summary.  Alterations in hepatic metabolism of S-amino acids were monitored over one week in male rats treated with a single dose of ethanol (3 g/kg, ip). Methionine and S-adenosylhomocysteine concentrations were increased rapidly, but S-adenosylmethionine, cysteine, and glutathione (GSH) decreased following ethanol administration. Activities of methionine adenosyltransferase, cystathionine γ-lyase and cystathionine β-synthase were all inhibited. γ-Glutamylcysteine synthetase activity was increased from t = 8 hr, but GSH level did not return to control for 24 hr. Hepatic hypotaurine and taurine levels were elevated immediately, but reduced below control in 18 hr. Changes in serum and urinary taurine levels were consistent with results observed in liver. Cysteine dioxygenase activity was increased rapidly, but declined from t = 24 hr. The results show that a single dose of ethanol induces profound changes in hepatic S-amino acid metabolism, some of which persist for several days. Ethanol not only inhibits the cysteine synthesis but suppresses the cysteine availability further by enhancing its irreversible catabolism to taurine, which would play a significant role in the depletion of hepatic GSH. Received April 26, 2002 Accepted June 12, 2002 Published online October 14, 2002 Authors' address: Young C. Kim, Ph.D., Professor of Toxicology, College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, Korea, Fax: +82-2-872-1795, E-mail: youckim@snu.ac.kr Abbreviations: CβS, cystathionine β-synthase; CDC, cysteine sulfinate decarboxylase; CDO, cysteine dioxygenase; CγL, cystathionine γ-lyase; GCS, γ-Glutamylcysteine synthetase; GSH, glutathione; MAT, methionine adenosyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.  相似文献   
942.
Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12   总被引:1,自引:1,他引:0  
A new strain of bacterium degrading polyaromatic hydrocarbons (PAHs), Burkholderia cepacia 2A-12, was isolated from oil-contaminated soil. Of three PAHs, the isolated strain could utilize naphthalene (Nap) and phenanthrene (Phe) as a sole carbon source but not pyrene (Pyr). However, the strain could degrade Pyr when a cosubstrate such as yeast extract (YE) was supplemented. The PAH degradation rate of the strain was enhanced by the addition of other organic materials such as YE, peptone, glucose, and sucrose. YE was a particularly effective additive in stimulating cell growth as well as PAH degradation. When 1 g YE l–1, an optimum concentration, was supplemented into the basal salt medium (BSM) with 215 mg Phe l–1, the specific growth rate (0.30 h–1) and Phe-degrading rate (29.6 mol l–1 h–1) were enhanced approximately ten and three times more than those obtained in the BSM with 215 mg Phe l–1, respectively. Both cell growth and PAH degradation rates were increased with increasing Phe and Pyr concentrations, and B. cepacia 2A-12 had a tolerance against Phe and Pyr toxicity at the high concentration of 730–760 mg l–1. Through kinetic analysis, the maximum specific growth rate ( max) and PAH degrading rate ( max) for Phe were obtained as 0.39 h–1 and 300 mol l–1 h–1, respectively. Also, max and max for Pyr were 0.27 h–1 and 52 mol l–1 h–1, respectively. B. cepacia 2A-12 could simultaneously degrade crude oil as well as PAHs, indicating that this bacterium is very useful for the removal of oils and PAHs contaminants.  相似文献   
943.
In the hydrogen peroxide (H2O2) apoptosis model of the murine thymocyte, redox reactant and antioxidant pyruvate prevents programmed cell death. We tested the hypothesis that such protection was mediated, at least in part, via pyruvate handling by mitochondrial metabolism. Cultured bovine pulmonary artery endothelial cells were incubated for 30 min with 0.5 mM H2O2 in the absence and presence of 0.5 mM -cyano-3-hydroxycinnamate, as a selective inhibitor of the mitochondrial pyruvate transporter. In controls H2O2 decreased cell viability by 30% within 24 h; this was associated with apoptosis-like bodies, nuclear condensation, and biochemical DNA damage consistent with programmed cell death. Pyruvate (0.1–20 mM) enhanced cell viability in a dose-dependent manner, with 85% viable cells at 3 mM and no DNA laddering, no positive nick-end labeling (TUNEL), and no detectable Annexin V or propidium iodide staining. In contrast, using 5 mM L-lactate as a cytosolic reductant or acetate as a redox-neutral substrate, cell death increased to 40%, which was associated with intense DNA laddering, positive TUNEL and Hoechst 33258 assays. -Cyano-3-hydroxycinnamate alone did not significantly decrease endothelial viability but reduced viability from 85 ± 3 to 71 ± 4% (p = 0.023) in presence of 3 mM pyruvate plus H2O2; pathological cell morphology and DNA laddering under the same conditions suggested loss of pyruvate protection against apoptosis. Since -cyano-3-hydroxycinnamate re-distributed medium pyruvate and L-lactate consistent with selective blockade of pyruvate uptake into the mitochondria, the findings support the hypothesis that pyruvate protection against H2O2 apoptosis is mediated in part via the mitochondrial matrix compartment. Possible mediators include anti-apoptotic bcl-2 and/or products of mitochondrial pyruvate metabolism such as citrate that affect metabolic regulation and anti-oxidant status in the cytoplasm.  相似文献   
944.
Mitochondrial dysfunction and degeneration are associated with many neurodegenerative disorders. A dysfunctional mitochondrial electron transport chain (ETC) impairs ATP production and accelerates the generation of free radicals. To evaluate mitochondrial function, reliable methods are needed. Conventional spectrophotometric assays may not eliminate interference from nonspecific enzyme activities and do not measure quantities of specific ETC complexes. Blue native polyacrylamide gel electrophoresis (BN-PAGE) has been used to resolve mitochondrial ETC complexes. Combined with histochemical staining, it has also been applied to measure ETC enzyme activities in muscles. The current study is to determine (1) whether BN-PAGE can be used to detect ETC complexes from different regions of the central nervous system (CNS) and (2) the quantitative range of BN-PAGE in measuring the amounts and activities of different ETC complexes. By systematically varying the protein amount and the time of histochemical reactions, we have found linear ranges comparable to spectrophotometric assays for measuring enzyme activities of several ETC complexes. In addition, we found linear ranges for measuring protein quantities in several ETC complexes. These results demonstrate that BN-PAGE can be used to measure the amount and activity of the ETC enzymes from the nerve tissues and, thus, can be applied to evaluate the functional changes of mitochondria in neurodegenerative disorders.  相似文献   
945.
Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584   总被引:1,自引:0,他引:1  
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C(8) chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. H?ltzel, M. G. G?nzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766-2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin.  相似文献   
946.
The tumor suppressor gene p16INK4A is a cyclin-dependent kinase inhibitor (CDKI) and an important cell cycle regulator. We have previously constructed a recombinant adenovirus which expresses p16 (Adp16) and shown that infection in a variety of human tumor cell lines with this recombinant virus results in high levels of p16INK4A protein expression resulting in cell cycle arrest and loss of cyclin-cdk activity. Furthermore, adenoviral-mediated overexpression of wild-type p16INK4A is more toxic in cancer cells which express mutant forms of p16INK4A compared to cancer cell lines containing endogenous wild-type p16. TUNEL assay and DAPI staining following infection of MDA-MB 231 breast cancer cells with Adp16 indicate that p16INK4A-mediated cytotoxicity was associated with apoptosis. This is supported by studies demonstrating a decrease in cpp32 and cyclinB1 protein levels and induction of poly (ADP-ribose) polymerase (PARP) cleavage following infection of MDA-MB-231 cells with Adp16. These results suggest that gene therapy using Adp16 may be a promising treatment option for human cancers containing alterations in p16 expression.  相似文献   
947.
948.
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.  相似文献   
949.
GLUT2, the major facilitative glucose transporter isoform expressed in hepatocytes, pancreatic beta-cells, and absorptive epithelial cells, is unique not only with its low affinity and broad substrate specificity as a glucose transporter, but also with its implied function as a glucose-sensor. As a first essential step toward structural and biochemical elucidation of these unique, GLUT2 functions, we describe here the differential solubilization and DEAE-column chromatography of rat hepatocyte GLUT2 protein and its reconstitution into liposomes. The reconstituted GLUT2 bound cytochalasin B in a saturable manner with an apparent dissociation constant (K(d)) of 2.3 x 10(-6) M and a total binding capacity (B(T)) of 8.1 nmol per mg protein. The binding was completely abolished by 2% mercury chloride, but not affected by cytochalasin E. Significantly, the binding was also not affected by 500 mM D-glucose or 3-O-methyl D-glucose (3OMG). The purified GLUT2 catalyzed mercury chloride-sensitive 3OMG uptake, and cytochalasin B inhibited this 3OMG uptake. The inhibition was dose-dependent with respect to cytochalasin B, but was independent of 3OMG concentrations. These findings demonstrate that our solubilized GLUT2 reconstituted in liposomes is at least 60% pure and functional, and that GLUT2 is indeed unique in that its cytochalasin B binding is not affected by its substrate (D-glucose) binding. Our partially purified GLUT2 reconstituted in vesicles will be useful in biochemical and structural elucidation of GLUT2 as a glucose transporter and as a possible glucose sensor.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号