首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5450篇
  免费   413篇
  国内免费   10篇
  2023年   14篇
  2022年   45篇
  2021年   80篇
  2020年   68篇
  2019年   75篇
  2018年   118篇
  2017年   108篇
  2016年   146篇
  2015年   263篇
  2014年   302篇
  2013年   360篇
  2012年   499篇
  2011年   443篇
  2010年   250篇
  2009年   242篇
  2008年   358篇
  2007年   295篇
  2006年   272篇
  2005年   278篇
  2004年   230篇
  2003年   233篇
  2002年   174篇
  2001年   145篇
  2000年   129篇
  1999年   119篇
  1998年   34篇
  1997年   50篇
  1996年   24篇
  1995年   24篇
  1994年   27篇
  1993年   22篇
  1992年   46篇
  1991年   42篇
  1990年   35篇
  1989年   36篇
  1988年   36篇
  1987年   28篇
  1986年   26篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   11篇
  1979年   12篇
  1978年   14篇
  1977年   9篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1972年   8篇
  1971年   9篇
排序方式: 共有5873条查询结果,搜索用时 390 毫秒
191.
In the production of biopharmaceuticals disk‐stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot‐scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale‐down approach based upon the use of a shear device and a bench‐top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large‐scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited. Biotechnol. Bioeng. 2016;113: 1934–1941. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   
192.
The relationship of cortical structure and specific neuronal circuitry to global brain function, particularly its perturbations related to the development and progression of neuropathology, is an area of great interest in neurobehavioral science. Disruption of these neural networks can be associated with a wide range of neurological and neuropsychiatric disorders. Herein we review activity of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, Epilepsy (Temporal Lobe Epilepsy - TLE), attention deficit hyperactivity disorder (ADHD), and mood disorders. We discuss the implications of DMN disruptions and their relationship to the neurocognitive model of each disease entity, the utility of DMN assessment in clinical evaluation, and the changes of the DMN following treatment.  相似文献   
193.
194.
195.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   
196.
The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV‐vis electronic absorption spectra. From solvatochromic theory the ground and excited‐state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski–Chamma–Viallet and Reichardt equations are quite similar. The ground and excited‐state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO‐LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
197.
The extracellular polysaccharides of Vibrio vulnificus play different roles during biofilm development. Among them, the effect of lipopolysaccharide (LPS), which is crucial for bacterial adherence to surfaces during the initial stage of biofilm formation, on the formation process was examined using various types of LPS extracts. Exogenously added LPS strongly inhibited biofilm formation in a dose-dependent manner. In addition, the exogenous addition of a deacylated form of LPS (dLPS) also inhibited biofilm formation. However, an LPS fraction extracted from a mutant not able to produce O-antigen polysaccharides (O-Ag) did not have an inhibitory effect. Furthermore, biofilm formation by several Gram-negative bacteria was inhibited by dLPS addition. In contrast, biofilm formation by Gram-positive bacteria was not influenced by dLPS but was affected by lipoteichoic acid. Therefore, this study demonstrates that O-Ag in LPS is important for inhibiting biofilm formation and may serve an efficient anti-biofilm agent specific for Gram-negative bacteria.  相似文献   
198.
199.
Calcium represents a promising anode for the development of high‐energy‐density, low‐cost batteries. However, a lack of suitable electrolytes has restricted the development of rechargeable batteries with a Ca anode. Furthermore, to achieve a high energy density system, sulfur would be an ideal cathode to couple with the Ca anode. Unfortunately, a reversible calcium‐sulfur (Ca‐S) battery has not yet been reported. Herein, a basic study of a reversible nonaqueous room‐temperature Ca‐S battery is presented. The reversibility of the Ca‐S chemistry and high utilization of the sulfur cathode are enabled by employing a Li+‐ion‐mediated calcium‐based electrolyte. Mechanistic insights pursued by spectroscopic, electrochemical, microscopic, and theoretical simulation (density functional theory) investigations imply that the Li+‐ions in the Ca‐electrolyte stimulate the reactivation of polysulfide/sulfide species. The coordination of lithium to sulfur reduces the formation of sturdy Ca‐S ionic bonds, thus boosting the reversibility of the Ca‐S chemistry. In addition, the presence of Li+‐ions facilitates the ionic charge transfer both in the electrolyte and across the solid electrolyte interphase layer, consequently reducing the interfacial and bulk impedance of Ca‐S batteries. As a result, both the utilization of active sulfur in the cathode and the discharge voltage of Ca‐S batteries are significantly improved.  相似文献   
200.
A mechanosensitive, visco‐poroelastic polymer ion pump that can rapidly establish a dense electrical double layer via mechanical pressure, thereby significantly enhancing output performance of an ionic triboelectric nanogenerator (iTENG), is described. A working mechanism of an iTENG using a highly mechanosensitive, visco‐poroelastic ion pump is suggested and the optimal characteristics of the polymer ion pump are reported by investigating optical, mechanical, electrical, and electrochemical properties. Surprisingly, the pressure sensitivity of the iTENG reaches 23.3 V kPa?1, which is tens of times the record value. To achieve controlled high‐frequency pulses from an iTENG, kinematic systems using a gear train and a cam are integrated with a single grounded iTENG, which produces a maximum of 600 V and 22 mA (≈2.2 W cm?2) at an input frequency of 1.67 Hz; after power transforming, those values are converted to 1.42 V and 225 mA. A capacitor of 1 mF can be fully charged to 2 V in only 60 s, making it possible to continuously operate a wireless‐communicating self‐powered humidity sensor. Also, due to the high transparency and deformability of the polymer ion pump, a self‐powered transparent tactile sensor is successfully assembled using a 5 × 5 iTENG array.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号