首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   26篇
  国内免费   1篇
  742篇
  2013年   13篇
  2012年   15篇
  2011年   20篇
  2010年   43篇
  2009年   46篇
  2008年   28篇
  2007年   35篇
  2006年   22篇
  2005年   12篇
  2004年   12篇
  2003年   9篇
  2001年   10篇
  2000年   7篇
  1999年   10篇
  1998年   13篇
  1997年   14篇
  1996年   14篇
  1995年   11篇
  1994年   7篇
  1993年   15篇
  1992年   11篇
  1991年   12篇
  1990年   6篇
  1989年   8篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1984年   10篇
  1983年   9篇
  1982年   8篇
  1981年   10篇
  1980年   12篇
  1979年   18篇
  1978年   12篇
  1977年   9篇
  1974年   9篇
  1973年   7篇
  1971年   7篇
  1969年   6篇
  1959年   8篇
  1958年   16篇
  1957年   17篇
  1956年   16篇
  1955年   8篇
  1954年   13篇
  1953年   18篇
  1952年   9篇
  1951年   10篇
  1950年   12篇
  1948年   8篇
排序方式: 共有742条查询结果,搜索用时 9 毫秒
51.
1. Subaqueous transport may be a significant dispersal and migration mechanism of non‐buoyant seeds of aquatic and riparian plants, and also secondary transport of seeds once they have lost buoyancy, but the efficiency of this difficult to observe process is largely unexamined. This study uses hydraulic modelling to establish the discharges that move the non‐buoyant seeds of Hymenocallis coronaria as bedload or suspended load; uses stream gauge data to examine the frequency of effective discharges from late June to late September, the seed maturation and germination period; and the potential transport distance of the seeds. 2. The results show that the majority of non‐buoyant seeds of H. coronaria can be transported as bedload through entire modelled stream reaches of lengths 10.8, 18 and 14.4 km with the 0.5 year return interval flow. Bedload apparently has the ability to move seeds over great distances, and may be a substantial factor determining the genetic structure, demography and dynamics of populations and communities. However, prolonged movement of non‐buoyant seeds in suspension appears to be quite rare. 3. Although insect mediated pollination and biochory occur concurrently with bedload transport, bedload transport alone may be sufficient to account for the established gene flow rate of H. coronaria. The potential transport distance of many of the seeds exceed that between populations, and migration may occur more frequently than the species’ generation time. 4. This is the first known study to use open‐channel hydraulic modelling and sediment transport analysis to determine the effectiveness of non‐buoyant seed transport. This method of analysis shows promise for application in other contexts, and especially where flow management is a critical issue for maintenance of rare species.  相似文献   
52.
53.
Abstract: Decades of research have produced substantial data on elk (Cervus elaphus) diets in winter, when foraging conditions are most likely to affect population dynamics. Using data from 72 studies conducted in western North America between 1938 and 2002, we collated data on elk diets and environmental variables. We used these data to quantify diet selection by elk and to test whether variation in elk diets is associated with habitat type, winter severity, period of winter, human hunting, and study method. Graminoids (grasses and grass-like plants such as sedges) dominated elk diets and consistently occurred at a higher proportion in the diet than in elk foraging habitats, indicating preference. Forbs commonly made up ≤5% of the diet, with no evidence for preference; we conclude that forb use is largely incidental to grazing for graminoids. Browse was consumed in proportion to its availability, implying that the amount of browse in the diet was primarily determined by habitat use rather than selection. Comparing the diets of elk and sympatric ruminants, elk consistently selected graminoids more strongly than sympatric ruminants with the exception of bison (Bison bison), suggesting that elk are not environmentally forced to adopt the graminoid-biased diet that they normally select. The proportion of open meadows and grasslands on winter ranges was strongly and positively associated with graminoid consumption by elk. The proportion of graminoids in the diet was significantly lower in elk experiencing severe winter conditions or predation risk from human hunting. The period of winter (early, middle, and late) had only small effects on elk diets, as did the method by which the diet was determined. Overall, variation in elk diets is well-explained by a consistent tendency to select graminoids if available, modified by winter habitat type, predation risk, and winter severity, which can constrain habitat selection and access to grazing opportunities. To fully understand variation in foraging behavior, biologists should recognize these broad patterns when interpreting resource selection data. Managers should recognize that inconspicuous behavioral responses to environmental stimuli can alter the diet in ways that probably carry nutritional consequences.  相似文献   
54.
Abstract The shape of species accumulation curves is influenced by the relative abundance and diversity of the fauna being sampled, and the order in which individuals are caught. We use resampling to show the variation in species accumulation curves caused by the order of trapping periods. Averaged species accumulation curves calculated by randomly assigning the order of trapping periods are smooth curves that are a better estimate of species richness and a more useful tool for determining the trapping effort required to adequately survey a site. We extend this concept of randomly resampling the trapping period to show that randomizing the number of individuals caught for each species over the number of collection periods (e.g. days) can provide an accurate estimate of the averaged species accumulation curve. This is particularly useful as it enables an accurate estimation of the proportion of the total number of species caught in an area during a survey from information on the number of individuals caught for each species and the number of trapping periods, and is not dependent on having knowledge of the trapping period in which each individual was caught. This calculation also enables an assessment to be made of the adequacy of fauna surveys to report a species inventory in environmental impact assessments when only a species list and relative abundance data are provided.  相似文献   
55.
We used the ecosystem process model Biome‐BGC to simulate the effects of harvest and residue removal management scenarios on soil carbon (C), available soil nitrogen (N), net primary production (NPP), and net ecosystem production (NEP) in jack pine (Pinus banksiana Lamb.) and sugar maple (Acer saccharum Marsh) ecosystems in northern Wisconsin, USA. To assess harvest effects, we simulated short (50‐year) and long (100‐year) harvest intervals, high (clear‐cut) and low (selective) harvest intensities, and three levels of residue retention (15%, 25%, and 35%) over a 500‐year period. The model simulation of NPP, soil C accumulation, and NEP agreed reasonably well with biometric and eddy‐covariance measurements of these two ecosystems. The more intensive (50‐year rotation clear‐cuts with low residue retention) harvest scenarios tended to have the greatest NEP (420 and 678 t C ha?1 for the 500‐year interval for jack pine and sugar maple, respectively). All the harvest scenarios decreased mineral soil C and available mineral soil N content relative to the no‐harvest scenario for jack pine and sugar maple. The rate of change in mineral soil C decreased the greatest in the most intensive biomass removal scenarios (?0.012 and ?0.072 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively) and the smallest decrease was observed in the least intensive biomass removal scenarios (?0.002 and ?0.009 t C ha?1 yr?1 relative to no‐harvest for jack pine and sugar maple, respectively). The more intensive biomass removal harvest scenarios in sugar maple significantly decreased peak productivity (NPP) in the simulation period.  相似文献   
56.
57.
58.
59.
Precipitation regimes are predicted to become more variable with more extreme rainfall events punctuated by longer intervening dry periods. Water‐limited ecosystems are likely to be highly responsive to altered precipitation regimes. The bucket model predicts that increased precipitation variability will reduce soil moisture stress and increase primary productivity and soil respiration in aridland ecosystems. To test this hypothesis, we experimentally altered the size and frequency of precipitation events during the summer monsoon (July through September) in 2007 and 2008 in a northern Chihuahuan Desert grassland in central New Mexico, USA. Treatments included (1) ambient rain, (2) ambient rain plus one 20 mm rain event each month, and (3) ambient rain plus four 5 mm rain events each month. Throughout two monsoon seasons, we measured soil temperature, soil moisture content (θ), soil respiration (Rs), along with leaf‐level photosynthesis (Anet), predawn leaf water potential (Ψpd), and seasonal aboveground net primary productivity (ANPP) of the dominant C4 grass, Bouteloua eriopoda. Treatment plots receiving a single large rainfall event each month maintained significantly higher seasonal soil θ which corresponded with a significant increase in Rs and ANPP of B. eriopoda when compared with plots receiving multiple small events. Because the strength of these patterns differed between years, we propose a modification of the bucket model in which both the mean and variance of soil water change as a consequence of interannual variability from 1 year to the next. Our results demonstrate that aridland ecosystems are highly sensitive to increased precipitation variability, and that more extreme precipitation events will likely have a positive impact on some aridland ecosystem processes important for the carbon cycle.  相似文献   
60.
Evolutionary relationships within and between the marine hydrophiine sea snake groups have been inferred primarily using morphological characters, and two major groups traditionally are recognized. The Aipysurus group comprises nine species in two genera, and the taxonomically chaotic Hydrophis group comprises as many as 40 species, of which 27 are generally allocated to the genus Hydrophis and 13 to ten additional genera. In addition to these two major groups are three putatively ‘primitive’ monotypic genera, Hydrelaps darwiniensis, Ephalophis greyi and Parahydrophis mertoni. The present study investigated the evolutionary relationships of 23 representative species of marine hydrophiines, comprising 15 species from the Hydrophis group, six species from the Aipysurus group, and H. darwiniensis and P. mertoni, to address two broad aims. First, the aim was to provide a robust phylogeny for sea snakes to test previous phylogenetic hypotheses based on morphology, and thus provide some taxonomic stability to the group. Second, there was interest in evaluating the hypothesis that the Hydrophis group might represent a rapidly diverged adaptive radiation. A large mitochondrial DNA data set based on the cytochrome b gene (1080 bp, 401 parsimony informative) and the 16S rRNA gene (510 bp, 57 parsimony informative) was assembled and these data were analysed using parsimony, maximum‐likelihood and Bayesian approaches. All analyses yielded virtually the same optimal tree, confirming that hydrophiine sea snakes comprise at least three lineages. The Aipysurus group formed a strongly supported and well‐resolved monophyletic clade. The Hydrophis group also formed a strongly supported clade; however, resolution among the genera and species was very poor. Hydrelaps darwiniensis and P. mertoni formed a sister clade to the Hydrophis lineage. Our phylogeny was used to test the validity of previous taxonomic and phylogenetic hypotheses, and to demonstrate that the genus Hydrophis is not monophyletic. Genetic diversity relative to phenotypic diversity is four to seven times greater in the Hydrophis lineage compared with the Aipysurus lineage. The topology of our phylogenetic hypothesis, combined with the levels of genetic divergence relative to morphological diversity, demonstrate that the Hydrophis lineage represents a rapidly diverged adaptive radiation. The data are consistent with the hypothesis that this adaptive radiation may be due to historical sea level fluctuations that have isolated populations and promoted speciation. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89 , 523–539.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号