首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   7篇
  国内免费   1篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2013年   8篇
  2012年   17篇
  2011年   10篇
  2010年   20篇
  2009年   28篇
  2008年   16篇
  2007年   24篇
  2006年   18篇
  2005年   15篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   9篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有288条查询结果,搜索用时 765 毫秒
101.
1. Within the host range of herbivorous insects, performance hierarchies are often correlated with relatedness to a primary host plant, as plant traits are phylogenetically conserved. Therefore, it was hypothesised that differences in herbivore performance on closely related plant species are due to resistance traits that vary in magnitude, rather than in the nature of the traits. 2. This hypothesis was tested by manipulating putative resistance traits of three congeneric thistle species (Cirsium arvense, Cirsium palustre, and Cirsium vulgare) and assessing the performance of the oligophagous, leaf‐feeding beetle, Cassida rubiginosa. Measurements were done of survival, weight gain, and development time of the beetle on its primary host, C. arvense, and two alternative hosts under low and high nutrient availability, and on shaved and unshaved leaves. 3. Survival of C. rubiginosa was strongly dependent on plant species with final mean survival rates of 47%, 16%, and 8% on C. arvense, C. palustre, and C. vulgare, respectively. Survival was primarily explained by leaf trichome densities, and to a lesser extent by specific leaf area. Leaf flavonoid concentrations did not explain differences in beetle survival, and there were no differences in beetle weight gain or development time of individuals that survived to adulthood. 4. No beetles survived on unshaved (hairy) C. vulgare plants, but manipulating leaf trichome densities of the thistle species by shaving the leaves moderated the plant‐specific resistance, and equalised the survival rates. Survival of C. rubiginosa on alternative congeneric hosts was explained by a common physical resistance trait that varied in magnitude.  相似文献   
102.
Mutagenesis of Clostridium acetobutylicum   总被引:2,自引:2,他引:0  
Mutagenesis of the obligate anaerobe Clostridium acetobutylicum was best accomplished using agents (e.g. ethyl methane sulphonate or N -methyl- N '-nitro- N -nitrosoguanidine) which are believed to act by a direct mutagenic mechanism. Other agents (e.g. u.v. radiation) whose effectiveness relies on misrepair of damaged DNA via an error-prone pathway, were poor mutagens of this organism. Procedures are described which readily yielded a variety of auxotrophic and other useful mutant strains of Cl. acetobutylicum and related saccharolytic clostridia.  相似文献   
103.
1. Predicted increases in the temperature of freshwaters is likely to affect how prey species respond to predators. We investigated how the predator avoidance behaviour of the freshwater pulmonate snail Lymnaea stagnalis is influenced by the temperature at which it was reared and that at which behavioural trials were carried out. 2. Crawl‐out behaviour of juvenile snails from two populations (high predation risk versus low predation risk) reared at either 15 or 20 °C was assessed in response to predation cues (predatory fish kairomones and conspecific alarm cues) in behavioural trials at both 15 and 20 °C. 3. Trial temperature had a significant effect on the time that snails spent in avoidance, regardless of their population of origin. Crawl‐out behaviour was greater during behavioural trials at 15 °C, but there was no effect of trial temperature on the speed with which animals showed avoidance behaviour. 4. There was no interactive effect of rearing temperature (RT) and trial temperature, but the effect of RT on avoidance behaviour did differ between populations. For an RT of 15 °C, snails from the South Drain (high risk) population showed a more rapid and longer avoidance response than those from the Chilton Moor (low risk) population. In contrast, for snails reared at 20 °C, there was no difference between populations for the duration of the avoidance response and snails from Chilton Moor crawled out faster than those from South Drain. 5. Hence, whilst (predictable) differences relative to natural predation threat in crawl‐out behaviour were apparent at 15 °C, raising the developmental temperature to 20 °C eliminated or, in the case of latency, reversed these differences. This suggests that L. stagnalis populations that cohabit with predatory fish and experience high developmental temperatures may have a reduced ability to respond to fish predation risk.  相似文献   
104.
105.
Abstract 1. Previous studies have quantified the recent decline of numerous Lepidopteran species in the U.K., including the garden tiger moth (Arctia caja), in which abundance has decreased by 85% over the past 30 years. At the same time that overall numbers have been falling, the distribution of abundance of this species has been moving northwards. In this study, morphological and genetic data were used to investigate the possibility that these changes in abundance and distribution have been accompanied by microevolutionary changes. 2. A comparison of wing size and shape in current and historical moth samples revealed that wing shape has altered significantly over the past century, resulting in longer, narrower hindwings and narrower forewings for a given forewing length. Habitat fragmentation and increased suitability of northerly sites provide a plausible explanation for the selection of increasingly dispersive individuals. 3. Mitochondrial DNA revealed no phylogeographic structuring either before or after the population decline. However, a comparison of mtDNA haplotypes from current and museum specimens indicated that the recent population decline across the U.K. has been accompanied by a significant loss of genetic diversity. 4. The changes in wing shape suggest recent adaptation to environmental change, whereas a loss of genetic diversity may limit the ability of garden tiger moths to adapt to future environmental change.  相似文献   
106.
Recruitment of Infauna: Positive or Negative Cues?   总被引:3,自引:0,他引:3  
The current paradigm for recruitment invokes passive transportof the larva in the water column followed by larval choice ofhabitat after deposition of the larva on or near the bottom.Larval choice is typically considered to be based on positivecues. I argue herein that the evidence for emphasizing rejectionof substrata by negative cues is at least as compelling as thatfor acceptance by positive cues. Data from the literature oncosts of rejection of settlement sites, types of emigrationby larvae and/or juveniles, and criteria by which infaunal larvaeand/or juveniles reject habitats are used to support this thes.  相似文献   
107.
Comparative embryo development has been studied histologicallyin Lupinus albus, Lupinus mutabilis, Vicia faba, Pisum sativumand Latkyrus latifolius. The detailed histology of the stagesof embryo formation up to the early differentiation of tissuesof the seed is reported. The rate of embryogenesis has beentimed through 15 stages of development from anthesis and comparativerates of tissue formation established between the species. Themain observation was the slow rate of morphogenesis of embryosand seeds in Lupinus albus in comparison with the very rapidrate observed in Pisum sativum. A long period at the globularembryo stage, when embryo morphogenesis was inactive contributedto the extended development time of embryos and seeds in Lupinusalbus. Slow differentiation of reproductive tissues in L. albusdetermines late maturity in seeds and pods. Lupinus albus, white lupin, L. mutabilis, tarwi, Vicia faba, faba bean, Pisum sativum, pea, Lathyrus latifolius, everlasting pea, embryo development  相似文献   
108.
Velasco recently criticized our formal definition of the species concept, arguing for its inappropriateness both in fundamental and practical aspects [Velasco JD (2008) Biological Journal of the Linnean Society , 93 , 865–869]. Here, we clarify some misunderstandings that are at the basis of Velasco's paper. First, we show why and how the definition of the species concept can be grounded in the theory of evolution and what that implies. Then, we explain why Velasco's formal criticisms are unjustified. Finally, we point out the practical and methodological consequences of a rigorous conceptual framework for species study, and we show that today's development of species delimitation methods fully agrees with our proposal.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 217–222.  相似文献   
109.
In the Low Arctic, a warming climate is increasing rates of permafrost degradation and altering vegetation. Disturbance associated with warming permafrost can change microclimate and expose areas of ion-rich mineral substrate for colonization by plants. Consequently, the response of vegetation to warming air temperatures may differ significantly from disturbed to undisturbed tundra. Across a latitudinal air temperature gradient, we tested the hypothesis that the microenvironment in thaw slumps would be warmer and more nutrient rich than undisturbed tundra, resulting in altered plant community composition and increased green alder ( Alnus viridis subsp. fruticosa ) growth and reproduction. Our results show increased nutrient availability, soil pH, snow pack, ground temperatures, and active layer thickness in disturbed terrain and suggest that these variables are important drivers of plant community structure. We also found increased productivity, catkin production, and seed viability of green alder at disturbed sites. Altered community composition and enhancement of alder growth and reproduction show that disturbances exert a strong influence on deciduous shrubs that make slumps potential seed sources for undisturbed tundra. Overall, these results indicate that accelerated disturbance regimes have the potential to magnify the effects of warming temperature on vegetation. Consequently, understanding the relative effects of temperature and disturbance on Arctic plant communities is critical to predicting feedbacks between northern ecosystems and global climate change.  相似文献   
110.
Revitalization of degraded landscapes may provide sinks for rising atmospheric CO2, especially in reconstructed prairies where substantial belowground productivity is coupled with large soil organic carbon (SOC) deficits after many decades of cultivation. The restoration process also provides opportunities to study the often‐elusive factors that regulate soil processes. Although the precise mechanisms that govern the rate of SOC accrual are unclear, factors such as soil moisture or vegetation type may influence the net accrual rate by affecting the balance between organic matter inputs and decomposition. A resampling approach was used to assess the control that soil moisture and plant community type each exert on SOC and total nitrogen (TN) accumulation in restored grasslands. Five plots that varied in drainage were sampled at least four times over two decades to assess SOC, TN, and C4‐ and C3‐derived C. We found that higher long‐term soil moisture, characterized by low soil magnetic susceptibility, promoted SOC and TN accrual, with twice the SOC and three times the TN gain in seasonally saturated prairies compared with mesic prairies. Vegetation also influenced SOC and TN recovery, as accrual was faster in the prairies compared with C3‐only grassland, and C4‐derived C accrual correlated strongly to total SOC accrual but C3‐C did not. High SOC accumulation at the surface (0–10 cm) combined with losses at depth (10–20 cm) suggested these soils are recovering the highly stratified profiles typical of remnant prairies. Our results suggest that local hydrology and plant community are critical drivers of SOC and TN recovery in restored grasslands. Because these factors and the way they affect SOC are susceptible to modification by climate change, we contend that predictions of the C‐sequestration performance of restored grasslands must account for projected climatic changes on both soil moisture and the seasonal productivity of C4 and C3 plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号