首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   706854篇
  免费   75508篇
  国内免费   7535篇
  789897篇
  2021年   9712篇
  2020年   6530篇
  2019年   7968篇
  2018年   10023篇
  2017年   8757篇
  2016年   12089篇
  2015年   16040篇
  2014年   19170篇
  2013年   24713篇
  2012年   28188篇
  2011年   27477篇
  2010年   18010篇
  2009年   16402篇
  2008年   21858篇
  2007年   21759篇
  2006年   20208篇
  2005年   18532篇
  2004年   17938篇
  2003年   16923篇
  2002年   16199篇
  2001年   34917篇
  2000年   34808篇
  1999年   27398篇
  1998年   8703篇
  1997年   9435篇
  1996年   8710篇
  1995年   8004篇
  1994年   7688篇
  1993年   7396篇
  1992年   20905篇
  1991年   19885篇
  1990年   18801篇
  1989年   18264篇
  1988年   16714篇
  1987年   15308篇
  1986年   14234篇
  1985年   13969篇
  1984年   11240篇
  1983年   9499篇
  1982年   7013篇
  1981年   6217篇
  1979年   10325篇
  1978年   7916篇
  1977年   7213篇
  1976年   6471篇
  1975年   7173篇
  1974年   7701篇
  1973年   7505篇
  1972年   6809篇
  1971年   6205篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
111.
It has been suggested by some authors that the low fruit to flower ratio in some Proteaceae is due to andromonoecy, while others, looking particularly at Banksia , have not been able to find evidence for male flowers in the inflorescences. Stirlingia latifolia, Xylomelum occidentals and X. angustifolium are clearly andromonoecous, while no evidence for this condition could be found in Brabejum stellatifoliutn. Production of fertile fruit is related to andromonoecy in Xylomelum and S. latifolia but not in Brabejum. It is unlikely that all-encompassing solutions will be found to what initially seem to be widespread traits in the family, especially in regard to pollination biology, as the genera in the family occupy widely different environments and have very diverse ecological ranges.  相似文献   
112.
HbA1c is the most prevalent of the minor human hemoglobins. It is formed by the nonenzymatic addition of glucose to the alpha-amino group of the beta chain by an initial condensation reaction and a subsequent intermolecular Amadori rearrangement. We have developed a method of analysis which utilizes high performance liquid chromatography to follow the formation of HbA1c and greatly simplifies the determination of the kinetic parameters associated with this reaction. This has allowed us to study the effects of several Hb ligands, including the hydrogen ion, on the kinetics of this glycosylation reaction. Both the initial condensation reaction and the subsequent rearrangement are shown to exhibit acid catalysis, but the rate of the condensation step is limited by the extent of protonation of the alpha-amino group. The variation in kinetic parameters as a function of hydrogen ion concentration has allowed us to determine the probable reaction mechanism of HbA1c formation by comparison to previously reported model systems of Schiff base formation and Amadori rearrangement. The formation of pre-HbA1c from deoxy-Hb shows an increased forward rate when compared to oxy-Hb. The presence of physiologic concentrations of CO2 causes a proportional decrease in both k1 and k-1. 2,3-Diphosphoglycerate causes a significant increase in the keq of the formation reaction. The effects of CO and the substitution of L-glucose for D-glucose are not significant.  相似文献   
113.
Colchicine-binding protein (CBP) was purified from a cultured carrot cell extract by DEAE-Sephacel, phosphocellulose and Sephadex G200 column chromatographies. The purified CBP separated into three bands on SDS-polyacrylamide gel electrophoresis. One of them reacted with a monoclonal antibody against chick brain alpha-tubulin and the other two with that against beta-tubulin. Colchicine-binding activity of the purified protein was enhanced by tartrate and inhibited little by an excess of podophyllotoxin. It decayed following first order kinetics, but was more stable than the CBP in the crude extract. The binding constant of the purified CBP for colchicine was 0.57 microM-1 and the number of binding sites of colchicine per mg protein was about 2 nmol. This binding constant is about ten times lower than that of porcine brain tubulin under identical conditions.  相似文献   
114.
The processing of murine invariant chain (Ii) to a cell surface form bearing complex N-linked oligosaccharides has been demonstrated in the B cell lymphoma, AKTB-1b. In addition, the rate of processing of pulse-labeled Ii has been determined relative to its rate of dissociation from the alpha/beta complex of I-Ak. Ii, alpha-, and beta-chains were immunoprecipitated with anti-I-Ak or anti-Ii monoclonal antibodies. The heretofore uncharacterized complex oligosaccharide form of Ii (Ii-c) was identified in gel-purified immunoprecipitates by peptide mapping with reverse-phase HPLC. Ii-c is resistant to deglycosylation by Endo H, which is specific for high-mannose N-linkages, but can be digested with Endo F, a glycosidase capable of cleaving both complex and high-mannose N-linked oligosaccharides. Immunoprecipitation of surface iodinated cells indicates that Ii-c is expressed on the plasma membrane. Pulse-chase metabolic labeling data show that the processing of Ii to Ii-c occurs with a t1/2 of about 120 min. In contrast, the processing of both alpha- and beta-chains of I-Ak to complex forms occurs with a t1/2 of 15 to 20 min. Our data show that Ii-hm begins to dissociate rapidly from the I-Ak complex after 100 to 120 min of chase. Only a small amount (less than 5% on a per mole basis) of Ii-c was found associated with the I-Ak complexes after 300 min of continuous metabolic labeling. These results are consistent with Ii serving as a carrier for Ia antigens as they are transported to the cell surface. In addition, they suggest that the processing of Ii to Ii-c, or a late processing event of the alpha- and beta-chains, such as their sialylation, may be a possible mechanism for inducing the dissociation of Ii from the I-Ak complex.  相似文献   
115.
To define catalytically essential residues of bacteriophage T7 RNA polymerase, we have generated five mutants of the polymerase, D537N, K631M, Y639F, H811Q and D812N, by site-directed mutagenesis and purified them to homogeneity. The choice of specific amino acids for mutagenesis was based upon photoaffinity-labeling studies with 8-azido-ATP and homology comparisons with the Klenow fragment and other DNA/RNA polymerases. Secondary structural analysis by circular dichroism indicates that the protein folding is intact in these mutants. The mutants D537N and D812N are totally inactive. The mutant K631M has 1% activity, confined to short oligonucleotide synthesis. The mutant H811Q has 25% activity for synthesis of both short and long oligonucleotides. The mutant Y639F retains full enzymatic activity although individual kinetic parameters are somewhat different. Kinetic parameters, (kcat)app and (Km)app for the nucleotides, reveal that the mutation of Lys to Met has a much more drastic effect on (kcat)app than on (Km)app, indicating the involvement of K631 primarily in phosphodiester bond formation. The mutation of His to Gln has effects on both (kcat)app and (Km)app; namely, three- to fivefold reduction in (kcat)app and two- to threefold increase in (Km)app, implying that His811 may be involved in both nucleotide binding and phosphodiester bond formation. The ability of the mutant T7 RNA polymerases to bind template has not been greatly impaired. We have shown that amino acids D537 and D812 are essential, that amino acids K631 and H811 play significant roles in catalysis, and that the active site of T7 RNA polymerase is composed of different regions of the polypeptide chain. Possible roles for these catalytically significant residues in the polymerase mechanism are discussed.  相似文献   
116.
The nucleotide sequences of a partial cDNA and three pseudogenes of human cytochrome c were determined. The complete nucleotide sequences which encode human cytochrome c were constructed on the basis of one of the pseudogenes by in vitro mutagenesis. The constructed human cytochrome c was functionally expressed in Saccharomyces cerevisiae. The recombinant human cytochrome c was purified and characterized.  相似文献   
117.
118.
L-myo-Inositol-1-phosphate synthase has been found to have at least a 5-fold preference for the beta-anomer of its natural substrate D-Glc-6-P. The alpha-anomer appears to be an inhibitor of the reaction and may be converted to product as well. As well as showing an enzymatic preference for the equatorial C-1 hydroxyl of D-Glc-6-P, our results suggest that it is the pyranose form of D-Glc-6-P that binds to the enzyme and that ring-opening is an enzymatic step. We have also found D-2-dGlc-6-P, D-2-F-2-dGlc-6-P, and D-Man-6-P each to be both competitive inhibitors and substrates that are converted to inositol phosphates by the synthase. D-Allose-6-P is a weak inhibitor of the enzyme, but not a substrate. D-Gal-6-P is neither substrate nor inhibitor. Thus the specificity of the synthase with respect to single position epimers of D-Glc-6-P increases in the order C1 less than C2 much less than C3 less than C4.  相似文献   
119.
Stressful treatments of cells provoke broad, transient, changes in cellular physiology and gene expression. In addition to these effects, DNA-damaging agents often induce permanent change in the form of mutations. Mutational patterns in target genes typically show hotspots and coldspots, the molecular basis of which appears to lie in the sequence context of the particular site. We determined the mutational pattern in an ultraviolet light-modified (in vitro) marker gene in a shuttle vector passaged through repair deficient (xeroderma pigmentosum) cells and compared it with patterns obtained from cells exposed to stress imposed by a DNA-damaging agent or a calcium ionophore. We found that the mutational hotspot pattern was altered by both stress treatments. We conclude that the cellular environment can influence the probability of mutagenesis at specific sites and propose that some of these effects on mutagenesis are mediated by alterations in cellular calcium levels.  相似文献   
120.
Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from the skin were determined. The results indicate that re-establishment of a low trans-epidermal water loss was associated with incorporation of linolenate into the two epidermal sphingolipids. Supplementation with columbinate resulted in relatively high amounts of this fatty acid in the investigated epidermal sphingolipids. Analysis of pooled skin specimens from a previous study in which weanling rats were fed a fat-free diet and supplemented orally with pure alpha-linolenate for 13 weeks (Hansen, H.S. and Jensen, B. (1983) Lipids 18, 682-690) revealed very little polyunsaturated fatty acid in the two sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier. This function of linoleate is independent of its role as precursor for arachidonate and icosanoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号