首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35004篇
  免费   2859篇
  国内免费   1860篇
  39723篇
  2024年   68篇
  2023年   389篇
  2022年   932篇
  2021年   1634篇
  2020年   1033篇
  2019年   1249篇
  2018年   1224篇
  2017年   864篇
  2016年   1324篇
  2015年   2025篇
  2014年   2370篇
  2013年   2548篇
  2012年   3083篇
  2011年   2768篇
  2010年   1720篇
  2009年   1428篇
  2008年   1661篇
  2007年   1515篇
  2006年   1353篇
  2005年   1142篇
  2004年   1019篇
  2003年   866篇
  2002年   746篇
  2001年   677篇
  2000年   681篇
  1999年   656篇
  1998年   386篇
  1997年   335篇
  1996年   360篇
  1995年   333篇
  1994年   325篇
  1993年   216篇
  1992年   351篇
  1991年   270篇
  1990年   306篇
  1989年   257篇
  1988年   189篇
  1987年   171篇
  1986年   152篇
  1985年   134篇
  1984年   121篇
  1983年   95篇
  1982年   77篇
  1981年   61篇
  1979年   75篇
  1978年   55篇
  1977年   53篇
  1975年   59篇
  1974年   47篇
  1973年   50篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   
982.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
983.
The traditional method to fabricate a MXene based energy storage device starts from etching MAX phase particles with dangerous acid/alkali etchants to MXenes, followed by device assembly. This is a multistep protocol and is not environmentally friendly. Herein, an all‐in‐one protocol is proposed to integrate synthesis and battery fabrication of MXene. By choosing a special F‐rich electrolyte, MAX V2AlC is directly exfoliated inside a battery and the obtained V2CTX MXene is in situ used to achieve an excellent battery performance. This is a one‐step process with all reactions inside the cell, avoiding any contamination to external environments. Through the lifetime, the device experiences three stages of exfoliation, electrode oxidation, and redox of V2O5. While the electrode is changing, the device can always be used as a battery and the performance is continuously enhanced. The resulting aqueous zinc ion battery achieves outstanding cycling stability (4000 cycles) and rate performance (97.5 mAh g?1 at 64 A g?1), distinct from all reported aqueous MXene‐based counterparts with pseudo‐capacitive properties, and outperforming most vanadium‐based zinc ion batteries with high capacity. This work sheds light on the green synthesis of MXenes, provides an all‐in‐one protocol for MXene devices, and extends MXenes’ application in the aqueous energy storage field.  相似文献   
984.
985.
The lithium–sulfur (Li–S) battery is a next generation high energy density battery, but its practical application is hindered by the poor cycling stability derived from the severe shuttling of lithium polysulfides (LiPSs). Catalysis is a promising way to solve this problem, but the rational design of relevant catalysts is still hard to achieve. This paper reports the WS2–WO3 heterostructures prepared by in situ sulfurization of WO3, and by controlling the sulfurization degree, the structure is controlled, which balances the trapping ability (by WO3) and catalytic activity (by WS2) toward LiPSs. As a result, the WS2–WO3 heterostructures effectively accelerate LiPS conversion and improve sulfur utilization. The Li–S battery with 5 wt% WS2–WO3 heterostructures as additives in the cathode shows an excellent rate performance and good cycling stability, revealing a 0.06% capacity decay each cycle over 500 cycles at 0.5 C. By building an interlayer with such heterostructure‐added graphenes, the battery with a high sulfur loading of 5 mg cm?2 still shows a high capacity retention of 86.1% after 300 cycles at 0.5 C. This work provides a rational way to prepare the metal oxide–sulfide heterostructures with an optimized structure to enhance the performance of Li–S batteries.  相似文献   
986.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
987.
Atomic catalysts (AC) are emerging as a highly attractive research topic, especially in sustainable energy fields. Lack of a full picture of the hydrogen evolution reaction (HER) impedes the future development of potential electrocatalysts. In this work, the systematic investigation of the HER process in graphdyine (GDY) based AC is presented in terms of the adsorption energies, adsorption trend, electronic structures, reaction pathway, and active sites. This comprehensive work innovatively reveals GDY based AC for HER covering all the transition metals (TM) and lanthanide (Ln) metals, enabling the screening of potential catalysts. The density functional theory (DFT) calculations carefully explore the HER performance beyond the comparison of sole H adsorption. Therefore, the screened catalysts candidates not only match with experimental results but also provide significant references for novel catalysts. Moreover, the machine learning (ML) technique bag‐tree approach is innovatively utilized based on the fuzzy model for data separation and converse prediction of the HER performance, which indicates a similar result to the theoretical calculations. From two independent theoretical perspectives (DFT and ML), this work proposes pivotal guidelines for experimental catalyst design and synthesis. The proposed advanced research strategy shows great potential as a general approach in other energy‐related areas.  相似文献   
988.
Chen  Junsen  Huang  Rui  Nie  Yiwen  Wen  Xinyue  Wu  Ying 《中国病毒学》2020,35(6):713-724
Virologica Sinica - Coronavirus disease 2019 (COVID-19), reminiscent of the severe acute respiratory syndrome (SARS) outbreak in 2003, has been a tragic disaster to people all over the world. As...  相似文献   
989.
Wang  Xingyu  Huang  Kun  Jiang  Haini  Hua  Lijuan  Yu  Weiwei  Ding  Dan  Wang  Ke  Li  Xiaopan  Zou  Zhong  Jin  Meilin  Xu  Shuyun 《中国病毒学》2020,35(6):793-802
Virologica Sinica - COVID-19 patients can recover with a median SARS-CoV-2 clearance of 20 days post initial symptoms (PIS). However, we observed some COVID-19 patients with existing...  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号