全文获取类型
收费全文 | 4317篇 |
免费 | 340篇 |
国内免费 | 10篇 |
专业分类
4667篇 |
出版年
2024年 | 6篇 |
2023年 | 12篇 |
2022年 | 61篇 |
2021年 | 82篇 |
2020年 | 63篇 |
2019年 | 84篇 |
2018年 | 104篇 |
2017年 | 79篇 |
2016年 | 153篇 |
2015年 | 262篇 |
2014年 | 267篇 |
2013年 | 284篇 |
2012年 | 392篇 |
2011年 | 321篇 |
2010年 | 190篇 |
2009年 | 179篇 |
2008年 | 287篇 |
2007年 | 256篇 |
2006年 | 230篇 |
2005年 | 201篇 |
2004年 | 199篇 |
2003年 | 158篇 |
2002年 | 152篇 |
2001年 | 78篇 |
2000年 | 60篇 |
1999年 | 63篇 |
1998年 | 37篇 |
1997年 | 28篇 |
1996年 | 12篇 |
1995年 | 11篇 |
1994年 | 17篇 |
1993年 | 12篇 |
1992年 | 26篇 |
1991年 | 28篇 |
1990年 | 16篇 |
1989年 | 26篇 |
1988年 | 24篇 |
1987年 | 23篇 |
1986年 | 22篇 |
1985年 | 16篇 |
1984年 | 15篇 |
1983年 | 9篇 |
1982年 | 12篇 |
1981年 | 12篇 |
1980年 | 10篇 |
1979年 | 12篇 |
1977年 | 9篇 |
1975年 | 13篇 |
1974年 | 10篇 |
1973年 | 8篇 |
排序方式: 共有4667条查询结果,搜索用时 15 毫秒
91.
Transition from Diffusion‐Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring 下载免费PDF全文
Qasim Mahmood Sul Ki Park Kideok D. Kwon Sung‐Jin Chang Jin‐Yong Hong Guozhen Shen Young Mee Jung Tae Jung Park Sung Woon Khang Woo Sik Kim Jing Kong Ho Seok Park 《Liver Transplantation》2016,6(1)
2D nanomaterials have been found to show surface‐dominant phenomena and understanding this behavior is crucial for establishing a relationship between a material's structure and its properties. Here, the transition of molybdenum disulfide (MoS2) from a diffusion‐controlled intercalation to an emergent surface redox capacitive behavior is demonstrated. The ultrafast pseudocapacitive behavior of MoS2 becomes more prominent when the layered MoS2 is downscaled into nanometric sheets and hybridized with reduced graphene oxide (RGO). This extrinsic behavior of the 2D hybrid is promoted by the fast Faradaic charge‐transfer kinetics at the interface. The heterostructure of the 2D hybrid, as observed via high‐angle annular dark field–scanning transmission electron microscopy and Raman mapping, with a 1T MoS2 phase at the interface and a 2H phase in the bulk is associated with the synergizing capacitive performance. This 1T phase is stabilized by the interactions with the RGO. These results provide fundamental insights into the surface effects of 2D hetero‐nanosheets on emergent electrochemical properties. 相似文献
92.
Woo Young Chung Myungjae Song Jinhong Park Wan Namkung Jinu Lee Hyongbum Kim Min Goo Lee Joo Young Kim 《Biotechnology letters》2016,38(12):2023-2034
Objectives: To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. Results: CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. Conclusions: This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport. 相似文献
93.
Polycystic kidney disease (PKD) is a common genetic disorder in which extensive epithelial-lined cysts develop in the kidneys. In previous studies, abnormalities of polycystin protein and its interacting proteins, as well as primary cilia, have been suggested to play critical roles in the development of renal cysts. However, although several therapeutic targets for PKD have been suggested, no early diagnosis or effective treatments are currently available. Current developments are active for treatment of PKD including inhibitors or antagonists of PPAR-γ, TNF-α, CDK and VEGF. These drugs are potential therapeutic targets in PKD, and need to be determined about pathological functions in human PKD. It has recently been reported that the alteration of epigenetic regulation, as well as gene mutations, may affect the pathogenesis of PKD. In this review, we will discuss recent approaches to PKD therapy. It provides important information regarding potential targets for PKD. 相似文献
94.
QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation 总被引:1,自引:0,他引:1
Novikov L Park JW Chen H Klerman H Jalloh AS Gamble MJ 《Molecular and cellular biology》2011,31(20):4244-4255
The histone variant macroH2A1 contains a carboxyl-terminal ~30-kDa domain called a macro domain. MacroH2A1 is produced as one of two alternatively spliced forms, macroH2A1.1 and macroH2A1.2. While the macro domain of macroH2A1.1 can interact with NAD(+)-derived small molecules, such as poly(ADP-ribose), macroH2A1.2's macro domain cannot. Here, we show that changes in the alternative splicing of macroH2A1 pre-mRNA, which lead to a decrease in macroH2A1.1 expression, occur in a variety of cancers, including testicular, lung, bladder, cervical, breast, colon, ovarian, and endometrial. Furthermore, reintroduction of macroH2A1.1 suppresses the proliferation of lung and cervical cancer cells in a manner that requires the ability of macroH2A1.1 to bind NAD(+)-derived metabolites. MacroH2A1.1-mediated suppression of proliferation occurs, at least in part, through the reduction of poly(ADP-ribose) polymerase 1 (PARP-1) protein levels. By analyzing publically available expression and splicing microarray data, we identified splicing factors that correlate with alterations in macroH2A1 splicing. Using RNA interference, we demonstrate that one of these factors, QKI, regulates the alternative splicing of macroH2A1 pre-mRNA, resulting in increased levels of macroH2A1.1. Finally, we demonstrate that QKI expression is significantly reduced in many of the same cancer types that demonstrate a reduction in macroH2A1.1 splicing. 相似文献
95.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins. 相似文献
96.
Moon Hee Jeong Shang-Jin Kim Hara Kang Kye Won Park Woo Jin Park Seung Yul Yang Dong Kwon Yang 《PloS one》2015,10(8)
Cucurbitacin I is a naturally occurring triterpenoid derived from Cucurbitaceae family plants that exhibits a number of potentially useful pharmacological and biological activities. However, the therapeutic impact of cucurbitacin I on the heart has not heretofore been reported. To evaluate the functional role of cucurbitacin I in an in vitro model of cardiac hypertrophy, phenylephrine (PE)-stimulated cardiomyocytes were treated with a sub-cytotoxic concentration of the compound, and the effects on cell size and mRNA expression levels of ANF and β-MHC were investigated. Consequently, PE-induced cell enlargement and upregulation of ANF and β-MHC were significantly suppressed by pretreatment of the cardiomyocytes with cucurbitacin I. Notably, cucurbitacin I also impaired connective tissue growth factor (CTGF) and MAPK signaling, pro-hypertrophic factors, as well as TGF-β/Smad signaling, the important contributing factors to fibrosis. The protective impact of cucurbitacin I was significantly blunted in CTGF-silenced or TGF-β1-silenced hypertrophic cardiomyocytes, indicating that the compound exerts its beneficial actions through CTGF. Taken together, these findings signify that cucurbitacin I protects the heart against cardiac hypertrophy via inhibition of CTGF/MAPK, and TGF- β/Smad-facilitated events. Accordingly, the present study provides new insights into the defensive capacity of cucurbitacin I against cardiac hypertrophy, and further suggesting cucurbitacin I’s utility as a novel therapeutic agent for the management of heart diseases. 相似文献
97.
Chung HK Kim SW Byun SJ Ko EM Chung HJ Woo JS Yoo JG Lee HC Yang BC Kwon M Park SB Park JK Kim KW 《BMB reports》2011,44(10):686-691
Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia. 相似文献
98.
Ahn KS Kim YJ Kim M Lee BH Heo SY Kang MJ Kang YK Lee JW Lee KK Kim JH Nho WG Hwang SS Woo JS Park JK Park SB Shim H 《Theriogenology》2011,75(5):933-939
Animals with a targeted disruption of genes can be produced by somatic cell nuclear transfer (SCNT). However, difficulties in clonal selection of somatic cells with a targeted mutation often result in heterogeneous nuclear donor cells, including gene-targeted and non-targeted cells, and impose a risk of producing undesired wildtype cloned animals after SCNT. In addition, the efficiency of cloning by SCNT has remained extremely low. Most cloned embryos die in utero, and the few that develop to term show a high incidence of postnatal death and abnormalities. In the present study, resurrection of an alpha-1,3-galactosyltransferase (αGT) gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts was attempted. Three cloned piglets were produced from the first round of SCNT, including one stillborn and two who died immediately after birth due to respiratory distress syndrome and cardiac dysfunction. Among the three piglets, two were confirmed to be αGT gene-targeted. Fibroblasts derived from postmortem ear skin biopsies were used as nuclear donor cells for the second round of SCNT, and a piglet was produced. As expected, PCR and Southern analyses confirmed that the piglet produced from recloning was αGT gene-targeted. Currently, the piglet is fourteen months of age, and no overt health problems have been observed. Results from the present study demonstrate that loss of an invaluable animal, such as a gene-targeted miniature pig, may be rescued by recloning, with assurance of the desired genetic modification. 相似文献
99.
The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses 总被引:1,自引:0,他引:1
The ubiquitin (Ub)-26S proteasome pathway is implicated in various cellular processes in higher plants. AtAIRP1, a C3H2C3-type RING (for Really Interesting New Gene) E3 Ub ligase, is a positive regulator in the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)-dependent drought response. Here, the AtAIRP2 (for Arabidopsis ABA-insensitive RING protein 2) gene was identified and characterized. AtAIRP2 encodes a cytosolic C3HC4-type RING E3 Ub ligase whose expression was markedly induced by ABA and dehydration stress. Thus, AtAIRP2 belongs to a different RING subclass than AtAIRP1 with a limited sequence identity. AtAIRP2-overexpressing transgenic (35S:AtAIRP2-sGFP) and atairp2 loss-of-function mutant plants exhibited hypersensitive and hyposensitive phenotypes, respectively, to ABA in terms of seed germination, root growth, and stomatal movement. 35S:AtAIRP2-sGFP plants were highly tolerant to severe drought stress, and atairp2 alleles were more susceptible to water stress than were wild-type plants. Higher levels of drought-induced hydrogen peroxide production were detected in 35S:AtAIRP2-sGFP as compared with atairp2 plants. ABA-inducible drought-related genes were up-regulated in 35S:AtAIRP2-sGFP and down-regulated in atairp2 progeny. The positive effects of AtAIRP2 on ABA-induced stress genes were dependent on SNF1-related protein kinases, key components of the ABA signaling pathway. Therefore, AtAIRP2 is involved in positive regulation of ABA-dependent drought stress responses. To address the functional relationship between AtAIRP1 and AtAIRP2, FLAG-AtAIRP1 and AtAIRP2-sGFP genes were ectopically expressed in atairp2-2 and atairp1 plants, respectively. Constitutive expression of FLAG-AtAIRP1 and AtAIRP2-sGFP in atairp2-2 and atairp1 plants, respectively, reciprocally rescued the loss-of-function ABA-insensitive phenotypes during germination. Additionally, atairp1/35S:AtAIRP2-sGFP and atairp2-2/35S:FLAG-AtAIRP1 complementation lines were more tolerant to dehydration stress relative to atairp1 and atairp2-2 single knockout plants. Overall, these results suggest that AtAIRP2 plays combinatory roles with AtAIRP1 in Arabidopsis ABA-mediated drought stress responses. 相似文献
100.
Amanda Rui En Woo Siu Kwan Sze Hwa Hwa Chung Valerie C-L Lin 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2019,1862(4):522-533
The activation functions AF1 and AF2 of nuclear receptors mediate the recruitment of coregulators in gene regulation. AF1 is mapped to the highly variable and intrinsically unstructured N terminal domain and AF2 lies in the conserved ligand binding domain. The unstructured nature of AF1 offers structural plasticity and hence functional versatility in gene regulation. However, little is known about the key functional residues of AF1 that mediates its interaction with coregulators. This study focuses on the progesterone receptor (PR) and reports the identification of K464, K481 and R492 (KKR) as the key functional residues of PR AF1. The KKR are monomethylated and function cooperatively. The combined mutations of KKR to QQQ render PR isoform B (PRB) hyperactive, whereas KKR to FFF mutations abolishes as much as 80% of PR activity. Furthermore, the hyperactive QQQ mutation rescues the loss of PR activity due to E911A mutation in AF2. The study also finds that the magnitudes of the mutational effect differ in different cell types as a result of differential effects on the functional interaction with coregulators. Furthermore, KKR provides the interface for AF1 to physically interact with p300 and SRC-1, and with AF2 at E911. Intriguingly, the inactive FFF mutant interacts strikingly stronger with both SRC-1 and AF2 than wt PRB. We propose a tripartite model to describe the dynamic interactions between AF1, AF2 and SRC-1 with KKR of AF1 and E911 of AF2 as the interface. An overly stable interaction would hamper the dynamics of disassembly of the receptor complex. 相似文献