首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   41篇
  2022年   6篇
  2021年   14篇
  2020年   9篇
  2019年   4篇
  2018年   8篇
  2017年   8篇
  2016年   16篇
  2015年   24篇
  2014年   24篇
  2013年   103篇
  2012年   37篇
  2011年   40篇
  2010年   24篇
  2009年   27篇
  2008年   42篇
  2007年   49篇
  2006年   61篇
  2005年   54篇
  2004年   53篇
  2003年   56篇
  2002年   57篇
  2001年   44篇
  2000年   30篇
  1999年   31篇
  1998年   11篇
  1997年   7篇
  1996年   9篇
  1995年   13篇
  1994年   8篇
  1993年   8篇
  1992年   26篇
  1991年   20篇
  1990年   24篇
  1989年   10篇
  1988年   23篇
  1987年   17篇
  1986年   21篇
  1985年   14篇
  1984年   14篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
排序方式: 共有1110条查询结果,搜索用时 15 毫秒
151.
14-3-3eta is a novel regulator of parkin ubiquitin ligase   总被引:7,自引:0,他引:7  
Mutation of the parkin gene, which encodes an E3 ubiquitin-protein ligase, is the major cause of autosomal recessive juvenile parkinsonism (ARJP). Although various substrates for parkin have been identified, the mechanisms that regulate the ubiquitin ligase activity of parkin are poorly understood. Here we report that 14-3-3eta, a chaperone-like protein present abundantly in neurons, could bind to parkin and negatively regulate its ubiquitin ligase activity. Furthermore, 14-3-3eta could bind to the linker region of parkin but not parkin with ARJP-causing R42P, K161N, and T240R mutations. Intriguingly, alpha-synuclein (alpha-SN), another familial Parkinson's disease (PD) gene product, abrogated the 14-3-3eta-induced suppression of parkin activity. alpha-SN could bind tightly to 14-3-3eta and consequently sequester it from the parkin-14-3-3eta complex. PD-causing A30P and A53T mutants of alpha-SN could not bind 14-3-3eta, and failed to activate parkin. Our findings indicate that 14-3-3eta is a regulator that functionally links parkin and alpha-SN. The alpha-SN-positive and 14-3-3eta-negative control of parkin activity sheds new light on the pathophysiological roles of parkin.  相似文献   
152.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   
153.
This study characterized the magnetic materials found within Daphnia resting eggs by measuring static magnetization with a superconducting quantum interference device (SQUID) magnetometer, after forming two types of conditions, each of which consists of zero-field cooling (ZFC) and field cooling (FC). Magnetic ions, such as Fe(3+), contained in Daphnia resting eggs existed as (1) paramagnetic and superparamagnetic particles, demonstrated by a magnetization and temperature dependence of the magnetic moments under an applied magnetic field after ZFC and FC, and (2) ferromagnetic particles with definite magnetic moments, the content of which was estimated to be very low, demonstrated by the Moskowitz test. Conventionally, biomagnets have been directly detected by transmission electron microscopes (TEM). As demonstrated in this study, it is possible to nondestructively detect small biomagnets by magnetization measurement, especially after two types of ZFC and FC. This nondestructive method can be applied in detecting biomagnets in complex biological organisms.  相似文献   
154.
155.
Functional characterization of ES cell-derived cardiomyocytes is important for differentiation control and application to the cell therapy. One of the crucial functions of cardiomyocytes is a production of atrial and brain natriuretic peptides (ANP and BNP, respectively), which have important endocrine, autocrine, and paracrine functions. In this study, we focused on the functional aspect of the cardiomyocytes differentiated from monkey ES cells in vitro and investigated the expression of ANP and BNP. Spontaneously contracting cells showed nodal-like action potentials, and expression of ANP and BNP by RT-PCR and immunocytochemistry. Interestingly, ANP and BNP expressions were detected as immunoreactive granules in the perinuclear area and these signals appeared to co-localize with trans-Golgi network. These findings suggest that monkey ES cells were able to differentiate into cardiomyocytes with functional characteristics in vitro and therefore can be used as a useful model to study mechanisms and functions in early cardiogenesis.  相似文献   
156.
157.
Grapes are commercially grown worldwide for fresh fruit and wine. They are mainly classified into bunch and muscadine grapes. These species differ in their sugar content and composition, photosynthetic efficiency and tolerance to abiotic and biotic stresses. Grape berry relies on carbohydrates produced during photosynthesis to support its development and composition. In view of the unique physiology and genetic make‐up of muscadine grape, a proteomics study was performed to increase our knowledge of Vitis leaf proteome in order to improve enological and disease tolerance characteristics of grape species. A high throughput two‐dimensional gel electrophoresis (2‐DE) was conducted on muscadine, bunch and hybrid bunch leaf proteins. The differentially expressed proteins were excised from 2‐DE gels, subjected to in‐gel trypsin digestion, and analysed in MALDI/TOF mass spectrometer. The mass spectra were collected and protein identification was performed by searching against Viridiplantae database using Matrix Science algorithm. Proteins were mapped to universal protein resource to study gene ontology. We have discovered >255 proteins with pIs between 3.5 and 8.0 and molecular weight between 12 and 100 kDa among the Vitis species. Comparative analysis of leaf proteome showed that 54 polypeptides varied qualitatively and quantitatively among the three Vitis species studied. Of these, seven proteins were unique to muscadine, two proteins were present in both muscadine and bunch, while 28 proteins were common to all the three species. Bioinformatic analysis of these proteins showed that they are involved in signal transduction pathway, transport of metabolites, energy metabolism, protein trafficking, photosynthesis and defence. We have also identified proteins unique to muscadine grape that are involved in defence and stress tolerance. In addition, photosynthesis‐related proteins were found to be more abundant in Vitis vinifera grape compared to other Vitis species.  相似文献   
158.
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery.  相似文献   
159.
160.
The peptide hormone ghrelin is released from a distinct group of gastrointestinal cells in response to caloric restriction, whereas its levels fall after eating. The mechanisms by which ghrelin secretion is regulated remain largely unknown. Here, we have used primary cultures of mouse gastric mucosal cells to investigate ghrelin secretion, with an emphasis on the role of glucose. Ghrelin secretion from these cells upon exposure to different d-glucose concentrations, the glucose antimetabolite 2-deoxy-d-glucose, and other potential secretagogues was assessed. The expression profile of proteins involved in glucose transport, metabolism, and utilization within highly enriched pools of mouse ghrelin cells and within cultured ghrelinoma cells was also determined. Ghrelin release negatively correlated with d-glucose concentration. Insulin blocked ghrelin release, but only in a low d-glucose environment. 2-Deoxy-d-glucose prevented the inhibitory effect of high d-glucose exposure on ghrelin release. mRNAs encoding several facilitative glucose transporters, hexokinases, the ATP-sensitive potassium channel subunit Kir6.2, and sulfonylurea type 1 receptor were expressed highly within ghrelin cells, although neither tolbutamide nor diazoxide exerted direct effects on ghrelin secretion. These findings suggest that direct exposure of ghrelin cells to low ambient d-glucose stimulates ghrelin release, whereas high d-glucose and glucose metabolism within ghrelin cells block ghrelin release. Also, low d-glucose sensitizes ghrelin cells to insulin. Various glucose transporters, channels, and enzymes that mediate glucose responsiveness in other cell types may contribute to the ghrelin cell machinery involved in regulating ghrelin secretion under these different glucose environments, although their exact roles in ghrelin release remain uncertain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号