首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   8篇
  255篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   6篇
  2013年   26篇
  2012年   5篇
  2011年   16篇
  2010年   6篇
  2009年   7篇
  2008年   13篇
  2007年   6篇
  2006年   23篇
  2005年   19篇
  2004年   14篇
  2003年   15篇
  2002年   16篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   4篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1971年   1篇
排序方式: 共有255条查询结果,搜索用时 0 毫秒
81.
To quantitatively evaluate the effect of insulin on cardiac sympathetic nerve activity (SNA) and analyze clinical factors associated with insulin sensitivity for the regulation of SNA in diabetics, 29 Japanese type 2 diabetics without neuropathy were recruited. A 2-h control study and a 2-h hyperinsulinemic euglycemic glucose clamp study were performed. From the power spectral analysis of R-R intervals on ECG during both studies, two major components, the low-frequency (LF) and the high-frequency component (HF), were obtained. Then %LF was calculated as LF/(LF +HF), and the ratio of the average %LF during the last 30 min of the clamp or the control to the average %LF for the entire time for clamp or control (R-%LF) was used as a marker of changes in SNA. R-%LF was significantly higher during the clamp than in the control (1.07 +/- 0.04 vs. 1.03 +/- 0.03, P < 0.05). High responders (individual R-%LF during clamp > or = mean + 2SD in control) showed a higher basal mean blood pressure (BP) before the clamp (89 +/- 3 vs. 82 +/- 2, P < 0.03) but not a higher glucose infusion rate (GIR) compared with low responders (相似文献   
82.
83.
Isolation and characterization of mouse CD7 cDNA   总被引:1,自引:0,他引:1  
The human CD7 antigen is a glycoprotein, M r 40 000, expressed on the surface of peripheral blood T-lymphocytes and thymocytes, and is the earliest surface antigen to appear on T-cell lineage cells. In this study, putative mouse CD7 cDNA was identified based on its similarities with human CD7. Five independent clones originating from the same mRNA species were isolated (designated as mCD7) by screening a mouse thymocyte cDNA library with human CD7 cDNA, J61, under moderate stringency. The longest insert of a 995 base pair had an open reading frame of 210 amino acids. Northern blot analysis using the mouse CD7 cDNA probe demonstrated a single 1.2 kilobase mRNA ni the thymus, spleen, bone marrow, and small intestine. The protein deduced from mCD7 cDNA consisted of the leader, extracellular, transmembrane, and cytoplasmic domains of 24, 126, 21, and 39 amino acids, respectively, based on the hydrophobicity plot and the structure of human CD7. The extracellualr domain contained three potential N-glycosilation sites, while the cytoplasmic domain contained one potential protein kinase C phosphorylation site. The amino acid sequence had 45.5% similarity with human CD7, while the similarities for the individual domains ranged from 49.2% to 63.2%. The six highly conserved regions, which may possibly be involved with still unknown CD7-mediated functions, were located in the extracellular and cytoplasmic domains.The nucleotide sequence data reported in this paper have seen submitted to the GenBank, DDBJ, and EMBL nucleotide sequence database and have been assigned the accession number D10329.  相似文献   
84.
Small interfering RNA (siRNA) has been widely used for suppressing gene expression in various organisms. Here, we describe efficient methods to suppress target genes (EGFP or Oct4) using siRNA in mouse and monkey ES cells, and differentiation. In mouse ES cells, FACS analysis revealed that EGFP expression was suppressed in 97% of transfected cells at 48 h after transfection. In addition, cells expressed Hand1 and Cdx2, which are the marker genes of trophoblast lineage by the transient suppression of Oct4. In the case of monkey ES cells, highly efficient suppression was achieved in 98% of cells at 96 h post-transfection using the Sendai virus (hemagglutinating virus of Japan, HVJ) envelope as a carrier of siRNA. These efficient transfection methods using synthetic siRNA should contribute to evaluate specific gene function in ES cells and can be used to differentiate ES cells into desired cell lineages.  相似文献   
85.
The chemotactic response of the nematode Caenorhabditis elegans is known to be affected by the population density on an assay plate, suggesting the existence of interactions between individual animals. To clarify the interactions between individuals during chemotaxis, we investigated the effect of population density at an attractant area on the chemotactic response to water-soluble sodium acetate and odorant diacetyl using wild-type N2 animals and daf-22 (m130) mutants, which have defective pheromone secretion but can sense pheromone. The chemotaxis index of N2 animals at 90 min of the assay negatively correlated with the number of animals on the assay plate regardless of the type of attractant used (p<0.01). On the other hand, there was no significant difference in the chemotaxis indices of daf-22 (m130) mutants for either of the attractants between the low-and high-population groups. When daf-22 (m130) mutants of a high population density were placed at the attractant location in advance, the chemotaxis index of N2 animals was almost the same as that in the control assay in which no animals were placed at the attractant location in advance. When N2 animals of a high population density were placed at the attractant location in advance, the chemotaxis indices of N2 animals and daf-22 (m130) mutants were significantly smaller than those obtained in the control assay (p<0.05). In the absence of an attractant, we observed a decline in the fraction of animals in the neighborhood of N2 animals of a high population density, although the nematodes were not influenced by daf-22 (m130) mutants of a high population density. These results suggest that the attraction of nematodes to chemicals is inhibited by an increase in the concentration of the pheromone generated by N2 animals at the attractant location.  相似文献   
86.
87.
Katada  Eiichi  Ojika  Kosei  Mitake  Shigehisa  Ueda  Ryuzo 《Brain Cell Biology》2000,29(3):199-207
A novel peptide, hippocampal cholinergic neurostimulating peptide (HCNP), originally purified from young rat hippocampus, affects the development of specific cholinergic neurons of the central nervous system in vitro. In this study, HCNP-like-immunoreactive nerve processes and nerve cell bodies were identified by electron microscopic immunocytochemistry in the rat small intestine. Labeled nerve processes were numerous in the circular muscle layer and around the submucosal blood vessels. In the submucosal and myenteric plexuses, some HCNP-like-immunopositive nerve cell bodies and nerve fibers were present. The reaction product was deposited on the membranes of various subcellular organelles, including the rough endoplasmic reticulum, Golgi saccules, ovoid electron-lucent synaptic vesicles in axon terminals associated with submucosal and myenteric plexuses, and the outer membranes of a few mitochondria. The synaptic vesicles of HCNP-like-positive terminals were 60–85 nm in diameter. The present data provide direct immunocytochemical evidence that HCNP-like-positive nerve cell bodies and nerve fibers are present in the submucosal and myenteric plexuses of the rat small intestine. An immunohistochemical light microscopic study using mirror-image sections revealed that in both the submucosal and myenteric ganglia, almost all choline acetyltransferase (ChAT)-immunoreactive neurons were also immunoreactive for HCNP. These observations suggest (i) that HCNP proper and/or HCNP precursor protein is a membrane-associated protein with a widespread subcellular distribution, (ii) that HCNP precursor protein may be biosynthesized within neurons localized in the rat enteric nervous system, and (iii) that HCNP proper and/or HCNP precursor protein are probably stored in axon terminals.  相似文献   
88.
Nicotinamide Deamidation by Microorganisms in Rat Stomach   总被引:1,自引:0,他引:1       下载免费PDF全文
We have extended our investigation of nicotinamide deamidation in the stomach of conventional rats. The bacterial species in the pars preventricularis were identified as Flavobacterium peregrinum, Escherichia coli, Streptococcus faecalis, and Lactobacillus acidophilus, listed in order of decreasing deamidase activity. Nicotinamide-7-(14)C ingested into rat stomach was rapidly deamidated to nicotinic acid. These results contribute to the accumulated evidence that microorganisms present in the pars preventricularis of rat stomach are responsible for the deamidation of nicotinamide to nicotinic acid, a known precursor of mammalian pyridine nucleotides.  相似文献   
89.
The involvement of a kallikrein−kinin system in the motility of mammalian spermatozoa has been suggested by several investigators. We found that incorporation of kallikrein (0.1–1.0) unit/ml) in the sperm incubation medium did not enhance the motility of hamster spermatozoa that were already active. However, this enzyme significantly increased the incidence of the acrosome reaction. Trypsin (1.8–18 units/ml) and chymotrypsin (0.34–3.4 units/ml) also increased the incidence of the acrosome reaction, and accelerated its onset. Kinins (bradykinin and kallidin) added to the medium in a wide concentration range (1 ng/ml to 1 mg/ml) had no marked effects on either the motility or the acrosome reaction. A kallikrein−kinin system is apparently not of primary importance at least for the acrosome reaction. The enhancement of the acrosome reaction by exogenous proteinases may be due in part to accelerated removal or alteration of the sperm surface coat (glycoprotein) by the enzyme peior to the acrosome reaction. Exogenous proteinases may also act synergistically with endogenous (acrosomal) proteinases (and other enzymes) in altering membrane proteins and dispersing the acrosome matrix during the course of teh acrosome reaction.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号