首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   12篇
  328篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   8篇
  2018年   10篇
  2017年   4篇
  2016年   8篇
  2015年   18篇
  2014年   17篇
  2013年   21篇
  2012年   20篇
  2011年   20篇
  2010年   12篇
  2009年   14篇
  2008年   27篇
  2007年   19篇
  2006年   17篇
  2005年   19篇
  2004年   18篇
  2003年   18篇
  2002年   18篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有328条查询结果,搜索用时 15 毫秒
101.
102.
Self-compatibility has become the primary objective of most almond (Prunus amygdalus Batsch) breeding programmes in order to avoid the problems related to the gametophytic self-incompatibility system present in almond. The progeny of the cross ‘Vivot’ (S 23 S fa) × ‘Blanquerna’ (S 8 S fi) was studied because both cultivars share the same S f allele but have a different phenotypic expression: active (S fa) in ‘Vivot’ and inactive (S fi) in ‘Blanquerna’. In addition, the microscopic observation of pollen tube growth after self-pollination over several years showed an unexpected self-incompatible behaviour in most seedlings of this cross. The genotypes of this progeny showed that the S fi pollen from ‘Blanquerna’ was not able to grow down the pistils of ‘Vivot’ harbouring the S fa allele, confirming the active function of this allele against the inactive form of the same allele, S fi. As self-compatibility was observed in some S 8 S 23 and S 8 S fa individuals of this progeny, the S f haplotype may not always be linked to the expression and transmission of self-compatibility in almond, suggesting that a modifier locus may be involved in the mechanism of self-incompatibility in plants.  相似文献   
103.
The aim of this study is to determine the efficacy of neoadjuvant chemotherapy (NAC) with gemcitabine (GEM) in combination with fluorescence-guided surgery (FGS) on a pancreatic cancer patient derived orthotopic xenograft (PDOX) model. A PDOX model was established from a CA19-9-positive, CEA-negative tumor from a patient who had undergone a pancreaticoduodenectomy for pancreatic adenocarcinoma. Mice were randomized to 4 groups: bright light surgery (BLS) only; BLS+NAC; FGS only; and FGS+NAC. An anti-CA19-9 or anti-CEA antibody conjugated to DyLight 650 was administered intravenously via the tail vein of mice with the pancreatic cancer PDOX 24 hours before surgery. The PDOX was brightly labeled with fluorophore-conjugated anti-CA19-9, but not with a fluorophore-conjugated anti-CEA antibody. FGS was performed using the fluorophore-conjugated anti-CA19-9 antibody. FGS had no benefit over BLS to prevent metastatic recurrence. NAC in combination with BLS did not convey an advantage over BLS to prevent metastatic recurrence. However, FGS+NAC significantly reduced the metastatic recurrence frequency to one of 8 mice, compared to FGS only after which metastasis recurred in 6 out of 8 mice, and BLS+NAC with metastatic recurrence in 7 out of 8 mice (p = 0.041). Thus NAC in combination with FGS can reduce or even eliminate metastatic recurrence of pancreatic cancer sensitive to NAC. The present study further emphasizes the power of the PDOX model which enables metastasis to occur and thereby identify the efficacy of NAC in combination with FGS on metastatic recurrence.  相似文献   
104.
The aggregation of 42-mer amyloid β (Aβ42) plays a central role in the pathogenesis of Alzheimer’s disease. Our recent research on proline mutagenesis of Aβ42 suggested that the formation of a turn structure at positions 22 and 23 could play a crucial role in its aggregative ability and neurotoxicity. Since E22K-Aβ42 (Italian mutation) aggregated more rapidly and with more potent neurotoxicity than wild-type Aβ42, the tertiary structure at positions 21–24 of E22K-Aβ42 fibrils was analyzed by solid-state NMR using dipolar-assisted rotational resonance (DARR) to identify the ‘malignant’ conformation of Aβ42. Two sets of chemical shifts for Asp-23 were observed in a ratio of about 2.6:1. The 2D DARR spectra at the mixing time of 500 ms suggested that the side chains of Asp-23 and Val-24 in the major conformer, and those of Lys-22 and Asp-23 in the minor conformer could be located on the same side, respectively. These data support the presence of a turn structure at positions 22 and 23 in E22K-Aβ42 fibrils. The formation of a salt bridge between Lys-22 and Asp-23 in the minor conformer might be a reason why E22K-Aβ42 is more pathogenic than wild-type Aβ42.  相似文献   
105.
To identify a novel class of antibiotics, we have developed a high-throughput genetic system for targeting the homodimerization (HD system) of histidine kinase (HK), which is essential for a bacterial signal transduction system (two-component system, TCS). By using the HD system, we screened a chemical library and identified a compound, I-8-15 (1-dodecyl-2-isopropylimidazole), that specifically inhibited the dimerization of HK encoded by the YycG gene of Staphylococcus aureus and induced concomitant bacterial cell death. I-8-15 also showed antibacterial activity against MRSA (methicillin-resistant S. aureus) and VRE (vancomycin-resistant Enterococcus faecalis) with MICs at 25 and 50 microg/ml, respectively.  相似文献   
106.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   
107.
Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion   总被引:1,自引:0,他引:1  
Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca(2+), but Ca(2+)-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca(2+) and restored Ca(2+)-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca(2+)-binding residues in C2A and C2B. Munc13-4 exhibited Ca(2+)-stimulated SNARE interactions dependent on C2A and Ca(2+)-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca(2+)-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca(2+)-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca(2+) sensor at rate-limiting priming steps in granule exocytosis.  相似文献   
108.
Thymic stromal lymphopoietin (TSLP), mainly produced by epithelial cells, activates a variety of cell types, including dendritic cells, mast cells, T cells, and B cells. It is involved in the pathogenesis of allergic inflammation in the lung, skin, and gastrointestinal tract. In addition, TSLP promotes Th2-type intestinal immunity against helminth infection and regulates Th1-type inflammation in a mouse model of colitis, suggesting that it plays crucial roles in intestinal immune homeostasis. Although autoimmune gastritis (AIG), mediated by inflammatory Th1 responses, develops in the gastric mucosa, it is not clear whether TSLP is involved in regulating these responses in AIG. The aim of this study was to examine the roles of TSLP in the development of AIG. Because BALB/c mice thymectomized 3 d after birth (NTx mice) develop AIG, we used this model to test the role of TSLP in the development of AIG. We found that in AIG-bearing mice, TSLP was expressed in the inflamed stomach and that the serum anti-parietal cell Ab levels in neonatal thymectomized TSLPR-deficient mice (NTx-TSLPR(-/-) mice) were significantly elevated over those in NTx-TSLPR(+/+) mice. In addition, NTx-TSLPR(-/-) mice exhibited an earlier onset of AIG than that observed in NTx-TSLPR(+/+) mice. The rapid development of AIG in NTx-TSLPR(-/-) mice resulted in more aggressive CD4(+) T cell infiltration and more severe loss of parietal and chief cells in the progression phase of AIG, accompanied by enhanced production of IL-12/23p40 and IFN-γ. Taken together, these data suggested that TSLP negatively regulates the development of AIG.  相似文献   
109.
Although induced pluripotent stem (iPS) cells are indistinguishable from ES cells in their expression of pluripotent markers, their differentiation into targeted cells is often limited. Here, we examined whether the limited capacity of iPS cells to differentiate into neural lineage cells could be mitigated by improving their base-line level of pluripotency, i.e. by converting them into the so-called “naive” state. In this study, we used rabbit iPS and ES cells because of the easy availability of both cell types and their typical primed state characters. Repeated passages of the iPS cells permitted their differentiation into early neural cell types (neural stem cells, neurons, and glial astrocytes) with efficiencies similar to ES cells. However, unlike ES cells, their ability to differentiate later into neural cells (oligodendrocytes) was severely compromised. In contrast, after these iPS cells had been converted to a naive-like state, they readily differentiated into mature oligodendrocytes developing characteristic ramified branches, which could not be attained even with ES cells. These results suggest that the naive-like conversion of iPS cells might endow them with a higher differentiation capacity.  相似文献   
110.
Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürt?s carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号