首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   43篇
  2022年   1篇
  2021年   9篇
  2020年   6篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   18篇
  2013年   21篇
  2012年   22篇
  2011年   21篇
  2010年   13篇
  2009年   15篇
  2008年   23篇
  2007年   20篇
  2006年   21篇
  2005年   31篇
  2004年   34篇
  2003年   20篇
  2002年   15篇
  2001年   7篇
  2000年   9篇
  1999年   12篇
  1998年   6篇
  1997年   7篇
  1996年   7篇
  1995年   8篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   4篇
  1990年   8篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有440条查询结果,搜索用时 615 毫秒
271.
The gene for cellulase from Ruminococcus albus F-40 was cloned in Escherichia coli HB101 with pBR322. A 3.4-kilobase-pair HindIII fragment encoding cellulase hybridized with the chromosomal DNA of R. albus. The Ouchterlony double-fusion test gave a single precipitation line between the cloned enzyme and the cellulase from R. albus. The size of the cloned fragment was reduced by using HindIII and EcoRI. The resulting active fragment had a size of 1.9 kilobase pairs; and the restriction sites EcoRI, BamHI, PvuII, EcoRI, PvuII, and HindIII, in that order, were ligated into pUC19 at the EcoRI and HindIII sites (pURA1). Cellulase production by E. coli JM103(pURA1) in Luria-Bertani broth was remarkably enhanced, up to approximately 80 times, by controlling the pH at 6.5 and by reducing the concentration of NaCl in the broth to 80 mM.  相似文献   
272.

Background

The polycystic kidney disease-like ion channel PKD2L1 and its associated partner PKD1L3 are potential candidates for sour taste receptors. PKD2L1 is expressed in type III taste cells that respond to sour stimuli and genetic elimination of cells expressing PKD2L1 substantially reduces chorda tympani nerve responses to sour taste stimuli. However, the contribution of PKD2L1 and PKD1L3 to sour taste responses remains unclear.

Methodology/Principal Findings

We made mice lacking PKD2L1 and/or PKD1L3 gene and investigated whole nerve responses to taste stimuli in the chorda tympani or the glossopharyngeal nerve and taste responses in type III taste cells. In mice lacking PKD2L1 gene, chorda tympani nerve responses to sour, but not sweet, salty, bitter, and umami tastants were reduced by 25–45% compared with those in wild type mice. In contrast, chorda tympani nerve responses in PKD1L3 knock-out mice and glossopharyngeal nerve responses in single- and double-knock-out mice were similar to those in wild type mice. Sour taste responses of type III fungiform taste cells (GAD67-expressing taste cells) were also reduced by 25–45% by elimination of PKD2L1.

Conclusions/Significance

These findings suggest that PKD2L1 partly contributes to sour taste responses in mice and that receptors other than PKDs would be involved in sour detection.  相似文献   
273.
Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well‐informed, land‐use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km2 (767–937 m asl.) from the surface down to the k‐Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using 14C dating) and δ13C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C‐sequestration rates. The mean total C stock of all six sites was 232 Mg C ha?1 (28–417 Mg C ha?1), which equates to a soil C sequestration rate of 32 kg C ha?1 yr?1 over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha?1 yr?1, respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ13C abundance. We conclude that the seminatural, C4‐dominated grassland system serves as an important C sink, and worthy of future conservation.  相似文献   
274.
For understanding the functions of the growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family of hormones, we examined pituitary mRNA expression of these hormones in anguillid eels in relation to salinity difference, silvering, and seasonal change. Female Japanese eels (Anguilla japonica) were collected in the brackish Hamana Lake and its freshwater rivers from July to December. To clarify the effect of salinity, the habitat use history of the eels were determined using otolith microchemistry. Expression levels of mRNA of each hormone were determined using real time PCR. Although GH and PRL have been known to be osmoregulatory hormones, there were no consistent differences in expression levels of these hormones between different salinity habitats. In contrast, SL mRNA expression was higher in eels from freshwater rivers than from the brackish lake. GH mRNA expression clearly decreased during silvering, whereas PRL and SL mRNA expression did not change. We also showed that PRL mRNA and SL mRNA decreased in the brackish lake and PRL mRNA increased in freshwater rivers from autumn to early winter. These findings provide basic knowledge for a further understanding of the role of these hormones.  相似文献   
275.
276.
Atopic dermatitis (AD) is a common pruritic inflammatory disease triggered by a defective skin barrier and immunodysregulation. AD has been considered a typical example of a Th2 response associated with allergic disease. In the early phases of the disease, symptoms include IgE hyperproduction, eosinophil accumulation, and mast cell activation; in the chronic phase, a Th1-dominant immune response is also observed at the sites of AD skin lesions. The role of IL-17-producing Th (Th17) cells in AD has not been established. In the current study, we found that pyridone 6 (P6), a pan-JAK inhibitor, delayed the onset and reduced the magnitude of skin disease in an AD-like skin-disease model of NC/Nga mice. P6 reduced IFN-γ and IL-13, whereas it enhanced IL-17 and IL-22 expression. In vitro, P6 also inhibited both Th1 and Th2 development, whereas it promoted Th17 differentiation from naive T cells when present within a certain range of concentrations. This was probably because P6 strongly inhibited STAT1, STAT5, and STAT6 phosphorylation, whereas STAT3 phosphorylation was less efficiently suppressed by P6 at the same concentration. Furthermore, IL-22 protects keratinocytes from apoptosis induced by IFN-γ, and administration of IL-17 and IL-22 partially ameliorated skin diseases in NC/Nga mice. These results suggested that the JAK inhibitor P6 is therapeutic for AD by modulating the balance of Th2 and Th17.  相似文献   
277.
Integrins are widely expressed cell surface molecules that mediate cell attachment to extracellular matrix (ECM) proteins. They also interact with molecules on their own membranes, and these cis-interactions play a crucial role in integrin-dependent cellular responses. We herein analysed what molecules interact with β1 integrin during biological events induced by cell attachment to different ECM proteins, using a recently established reaction, the enzyme-mediated activation of radical sources (EMARS). The interactions between β1 integrin and receptor tyrosine kinases including EGFR and ErbB4 reached a peak at 2 h after seeding HeLa S3 cells onto the ECM proteins. The peak of phosphorylation of ErbB4 (at 2 h after seeding the cells onto fibronectin) coincided with the peak of the interaction with β1 integrin, while that of EGFR (at 1 day) did not. Accompanying with these findings, suppression of cell migration by a pharmacological inhibitor of the ErbB family receptors, PD168393 and an anti-ErbB4 neutralizing antibody, 12D8 was observed at 2 h after seeding. Taken together, it is deduced that interactions between β1 integrin and ErbB4 occur in a spatiotemporally-regulated manner, and such interaction contributes to the integrin-dependent cell migration.  相似文献   
278.
Cilia and flagella are formed and maintained by intraflagellar transport (IFT) and play important roles in sensing and moving across species. At the distal tip of the cilia/flagella, IFT complexes turn around to switch from anterograde to retrograde transport; however, the underlying regulatory mechanism is unclear. Here, we identified ICK localization at the tip of cilia as a regulator of ciliary transport. In ICK‐deficient mice, we found ciliary defects in neuronal progenitor cells with Hedgehog signal defects. ICK‐deficient cells formed cilia with mislocalized Hedgehog signaling components. Loss of ICK caused the accumulation of IFT‐A, IFT‐B, and BBSome components at the ciliary tips. In contrast, overexpression of ICK induced the strong accumulation of IFT‐B, but not IFT‐A or BBSome components at ciliary tips. In addition, ICK directly phosphorylated Kif3a, while inhibition of this Kif3a phosphorylation affected ciliary formation. Our results suggest that ICK is a Kif3a kinase and essential for proper ciliogenesis in development by regulating ciliary transport at the tip of cilia.  相似文献   
279.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   
280.

Background

Epithelial-to-mesenchymal transition (EMT) is a phenomenon that allows the conversion of adherent epithelial cells to a mesenchymal cell phenotype, which enhances migratory capacity and invasiveness. Recent studies have suggested that EMT contributes to the pathogenesis of ulcerative colitis (UC). We investigated the promoter DNA methylation status of EMT-related genes in the colonic mucosa in UC.

Methods

Colonic biopsies were obtained from the rectal inflammatory mucosa of 86 UC patients and the non-inflammatory proximal colonic mucosa of 10 paired patients. Bisulfite pyrosequencing was used to quantify the methylation of 5 candidate CpG island promoters (NEUROG1, CDX1, miR-1247, CDH1, and CDH13) and LINE1.

Results

Using an unsupervised hierarchical clustering analysis, inflamed rectal mucosa was well separated from mucosa that appeared normal. The CDH1 and CDH13 promoters were significantly associated with patient age (p = 0.04, 0.03, respectively). A similar trend was found between those genes and the duration of disease (CDH1: p = 0.07, CDH13: p = 0.0002, mean of both: p<0.00001). Several positive associations were found between hypermethylation and severe clinical phenotypes (CDX1 and miR-1247 and a refractory phenotype: p = 0.04 and 0.006, respectively. miR-1247 and CDH1 hyper methylation and a more severe Mayo endoscopic subscore: miR-1247: p = 0.0008, CDH1: p = 0.03, mean of both: p = 0.003). When the severe clinical phenotype was defined as having any of five phenotypes (hospitalized more than twice, highest Mayo endoscopic subscore, steroid dependence, refractory, or a history of surgery) miR-1247 hypermethylation was associated with the same phenotype (p = 0.008).

Conclusions

Our data suggest that variability in the methylation status of EMT-related genes is associated with more severe clinical phenotypes in UC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号