首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   45篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   16篇
  2017年   8篇
  2016年   22篇
  2015年   29篇
  2014年   28篇
  2013年   40篇
  2012年   59篇
  2011年   34篇
  2010年   21篇
  2009年   33篇
  2008年   34篇
  2007年   53篇
  2006年   51篇
  2005年   57篇
  2004年   52篇
  2003年   46篇
  2002年   38篇
  2001年   10篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有762条查询结果,搜索用时 46 毫秒
41.
ACdc25 family protein Lte1 (low temperature essential) is essential for mitotic exit at a lowered temperature and has been presumed to be a guanine nucleotide exchange factor (GEF) for a small GTPase Tem1, which is a key regulator of mitotic exit. We found that Lte1 physically associates with Ras2-GTP both in vivo and in vitro and that the Cdc25 homology domain (CHD) of Lte1 is essential for the interaction with Ras2. Furthermore, we found that the proper localization of Lte1 to the bud cortex is dependent on active Ras and that the overexpression of a derivative of Lte1 without the CHD suppresses defects in mitotic exit of a Deltalte1 mutant and a Deltaras1 Deltaras2 mutant. These results suggest that Lte1 is a downstream effector protein of Ras in mitotic exit and that the Ras GEF domain of Lte1 is not essential for mitotic exit but required for its localization.  相似文献   
42.
Phosphodiesterase 3B (PDE3B) gene expression is generally reduced in large adipocytes of obese, insulin-resistant mice. This reduced gene expression is restored by peroxisome proliferator-activated receptor (PPAR) gamma ligands accompanied by a reduced fat cell size. To determine whether PDE3B gene expression is regulated by PPAR gamma itself, we analyzed lean PPAR gamma (+/-) mice with adipocyte size comparable to control PPAR gamma (+/+) mice. In adipocytes of PPAR gamma (+/-) mice, PDE3B mRNA and protein were both reduced to 63% of wild-type levels. Basal PDE activity tended to be decreased to 70% of wild-type levels, and, similarly, insulin-induced PDE activity was significantly decreased to 70%. Thus, PPAR gamma is required for PDE3B gene expression independent of adipocyte size.  相似文献   
43.
The dioecious plant Silene latifolia has large, heteromorphic X and Y sex chromosomes that are thought to be derived from rearrangements of autosomes. To reveal the origin of the sex chromosomes in S. latifolia, we isolated and characterized telomere-homologous sequences from intra-chromosomal regions (interstitial telomere-like repeats; ITRs) and ITR-adjacent sequences (IASs). Nine genomic DNA fragments with degenerate 84- to 175-bp ITRs were isolated from a genomic library and total genome of male plants. Comparing the nucleotide sequences, the IASs of the nine ITRs were classified into seven elements (IAS-a, IAS-b, IAS-c, IAS-d, IAS-e, IAS-f, and IAS-g) by sequence similarity. The ITRs were grouped into two classes (class-I and -II ITRs) according to the classification of IASs. The class-I ITRs were sub-grouped into three subclasses (subclasses-IA, -IB, and -IC ITRs) based on the arrangement of IAS elements. By contrast, the class-II ITR was located between two different IASs (IAS-f and IAS-g). Genomic Southern analyses showed that both the male and female genomes contained six (IAS-f) to 153 (IAS-d) copies of each IAS per haploid genome. Fluorescence in situ hybridization analyses showed that one IAS element, IAS-d, was distributed in the interstitial and proximal regions of the sex chromosomes of S. latifolia. The distribution of IAS-d is important evidence for past telomere-mediated chromosome rearrangements during the evolution of the sex chromosomes of S. latifolia.  相似文献   
44.
Disruption of adiponectin causes insulin resistance and neointimal formation   总被引:110,自引:0,他引:110  
The adipocyte-derived hormone adiponectin has been proposed to play important roles in the regulation of energy homeostasis and insulin sensitivity, and it has been reported to exhibit putative antiatherogenic properties in vitro. In this study we generated adiponectin-deficient mice to directly investigate whether adiponectin has a physiological protective role against diabetes and atherosclerosis in vivo. Heterozygous adiponectin-deficient (adipo(+/-)) mice showed mild insulin resistance, while homozygous adiponectin-deficient (adipo(-/-)) mice showed moderate insulin resistance with glucose intolerance despite body weight gain similar to that of wild-type mice. Moreover, adipo(-/-) mice showed 2-fold more neointimal formation in response to external vascular cuff injury than wild-type mice (p = 0.01). This study provides the first direct evidence that adiponectin plays a protective role against insulin resistance and atherosclerosis in vivo.  相似文献   
45.
Transgenic rice ( Oryza sativa cv. Sasanishiki) overexpressing the wasabi defensin gene, a plant defensin effective against the rice blast fungus, was generated by Agrobacterium tumefaciens-mediated transformation. Twenty-two T2 homozygous lines harboring the wasabi defensin gene were challenged by the blast fungus. Transformants exhibited resistance to rice blast at various levels. The inheritance of the resistance over generations was investigated. T3 plants derived from two highly blast-resistant T2 lines (WT14-5 and WT43-5) were challenged with the blast fungus using the press-injured spots method. The average size of disease lesions of the transgenic line WT43-5 was reduced to about half of that of non-transgenic plants. The 5-kDa peptide, corresponding to the processed form of the wasabi defensin, was detected in the total protein fraction extracted from the T3 progeny. Transgenic rice plants overproducing wasabi defensin are expected to possess a durable and wide-spectrum resistance (i.e. field resistance) against various rice blast races.  相似文献   
46.
47.
48.
Thymidine phosphorylase (TP) has chemotactic and angiogenic activities resulting from its enzymatic activity in vitro, and it also promotes tumor growth and inhibits apoptosis in vivo. Recently, we have reported that TP plays an important role in Fas-induced apoptosis. Caspase-8 cleavage, subsequent cytochrome c release, and caspase-3 cleavage were prevented in KB cells transfected with a TP cDNA (KB/TP cells). In this study, treatment with thymidine phosphorylase inhibitor (TPI) or thymidine did not affect cell survival of KB/TP cells during Fas-induced apoptosis. Moreover, treatment with thymine or 2-deoxy-D-ribose (degradation products of thymidine generated by TP) also did not affect cell survival of control transfectant (KB/CV) cells during Fas-induced apoptosis. These findings indicate that TP suppresses Fas-induced apoptotic signal transduction independent of its enzymatic activity.  相似文献   
49.
Yamaguchi R  Newport J 《Cell》2003,113(1):115-125
All eukaryotic cells have regulatory mechanisms that limit genomic replication to a single round each cell cycle. These systems function by blocking formation of prereplication complexes. The regulatory mechanisms in the yeast S. cerevisiae have been identified, but these do not appear to be conserved in metazoans. Using Xenopus egg extracts, we have identified a metazoan-specific regulatory system that limits replication to a single round. We show that during S phase, soluble MCM helicase, an essential initiation factor, is inactivated when it associates with exportin-1/Crm1. Formation of this complex is dependent on both high Ran-GTP and cdk2 kinase activity. Lowering Ran-GTP within nuclei or nuclear extracts allows MCM to reassociate with chromatin during S phase and induces re-replication. Importantly, prevention of re-replication requires MCM-Crm1 complex formation, but it does not require export of MCM from the nucleus. Therefore, in metazoans, Crm1 functions in both nuclear export and blocking of re-replication.  相似文献   
50.
Obesity and insulin resistance have been recognized as leading causes of major health issues. We have endeavored to depict the molecular mechanism of insulin resistance, focusing on the function of adipocyte. We have investigated a role of PPARgamma on the pathogenesis of Type II diabetes. Heterozygous PPARgamma-deficient mice were protected from the development of insulin resistance due to adipocyte hypertrophy under a high-fat diet. Moreover, a Pro12Ala polymorphism in the human PPARgamma2 gene was associated with decreased risk of Type II diabetes in Japanese. Taken together with these results, PPARgamma is proved to be a thrifty gene mediating Type II diabetes. Pharmacological inhibitors of PPARgamma/RXR ameliorate high-fat diet-induced insulin resistance in animal models of Type II diabetes. We have performed a genome-wide scan of Japanese Type 2 diabetic families using affected sib pair analysis. Our genome scan reveals at least 9 chromosomal regions potentially harbor susceptibility genes of Type II diabetes in Japanese. Among these regions, 3q26-q28 appeared to be very attractive one, because of the gene encoding adiponectin, the expression of which we had found enhanced in insulin-sensitive PPARgamma-deficient mice. Indeed, the subjects with the G/G genotype of SNP276 in the adiponectin gene were at increased risk for Type II diabetes compared with those having the T/T genotype. The plasma adiponectin levels were lower in the subjects with the G allele, suggesting that genetically inherited decrease in adiponectin levels predispose subjects to insulin resistance and Type II diabetes. Our work also confirmed that replenishment of adiponectin represents a novel treatment strategy for insulin resistance and Type II diabetes using animal models. Further investigation will be needed to clarify how adiponectin exerts its effect and to discover the molecular target of therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号