首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   45篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   16篇
  2017年   8篇
  2016年   22篇
  2015年   29篇
  2014年   28篇
  2013年   40篇
  2012年   59篇
  2011年   34篇
  2010年   21篇
  2009年   33篇
  2008年   34篇
  2007年   53篇
  2006年   51篇
  2005年   57篇
  2004年   52篇
  2003年   46篇
  2002年   38篇
  2001年   10篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有762条查询结果,搜索用时 15 毫秒
101.
Context and objective: Plasma arachidonate (20:4) levels in patients with chronic obstructive pulmonary disease (COPD) were investigated. Methods: Plasma was extracted and free fatty acids (FFAs) were separated using column chromatography and measured by fluorescence. Plasma 20:4 levels and its percentage relative to total FFA levels (%20:4) were measured in COPD (n = 18) and control (n = 20) subjects. Results and conclusions: FFA levels were lower in COPD compared with normals. However, there was a significant increase in %20:4 levels in COPD patients (GOLD stage I/II 0.9 ± 0.4%; GOLD stage III/IV 1.1 ± 0.1%) compared with control subjects (0.6 ± 0.1, p < 0.05). %20:4 is a potential biomarker for COPD.  相似文献   
102.
103.
Signal peptide peptidase (SPP) is an aspartic proteinase that hydrolyses its substrate within the plane of the cellular membrane. In vertebrates, it plays crucial roles in life processes such as differentiation, embryogenesis, cell signaling and immunological response. We first found SPP in plants. An ortholog of human SPP (AtSPP), and its five AtSPP homologs (AtSPPL1-AtSPPL5), were searched for in the Arabidopsis database. These clones were grouped into three different clusters: AtSPP was grouped with human SPP (HsSPP) orthologs, AtSPPL1 with the HsSPPL3 family, and AtSPPL2-AtSPPL5 with the group of SPP-like proteins of plant origin. AtSPP, AtSPPL1 and AtSPPL2 were examined for their expression profiles by in situ hybridization. AtSPP was strongly expressed in both the shoot meristem of germinating seeds and the inflorescence meristem at the reproductive stage. On the other hand, AtSPPL1 and AtSPPL2 were expressed in the shoot meristem of germinating seeds, but at very low levels in the shoot apex at the reproductive stage. The subcellular localization of AtSPP, AtSPPL1 and AtSPPL2 was investigated using green fluorescent protein (GFP) fusion proteins in cultured 'Deep' cells. GFP-AtSPP localized to the endoplasmic reticulum (ER), and GFP-AtSPPL1 and GFP-AtSPPL2 to the endosomes. These results suggest that AtSPP mediates the cleavage of signal peptide in the ER membrane as well as HsSPP does, and also that AtSPPL1 and AtSPPL2 located in the endosomes have distinct roles in cells.  相似文献   
104.
The major vault protein (MVP) is the major constituent of the vault particle, the largest ribonuclear protein complex described to date and is identical to lung resistance-related protein (LRP). Although MVP is also expressed in several normal tissues, little is known about its physiological role. MVP played a protective role against some xenobiotics and other stresses. We thus investigated the effect of osmotic stress on MVP expression by treating human colon cancer SW620 cells with sucrose or NaCl. The expression level of both MVP protein and MVP mRNA was increased by the osmostress. Sucrose or sodium chloride could also enhance MVP promoter activity. Inhibition of p38 MAPK in SW620 cells by SB203580 inhibited the expression of MVP under hyperosmotic stress. These findings suggested that osmotic stress up-regulated the MVP expression through p38 MAPK pathway. Down-regulation of MVP expression by MVP interfering RNA (RNAi) in SW620 cells increased the sensitivity of the cells to hyperosmotic stress and enhanced apoptosis. Furthermore, MVP RNAi prevented the osmotic stress-induced, time-dependent increase in phosphorylated Akt. These findings suggest that the PI3K/Akt pathway might be implicated in the cytoprotective effect of MVP.Our data demonstrate that exposure of cells to hyperosmotic stress induces MVP that might play an important role in the protection of the cells from the adverse effects of osmotic stress.  相似文献   
105.
Bone resorption in the joints is the characteristic finding in patients with rheumatoid arthritis (RA). Osteoclast-like cells are present in the synovial tissues and invade the bone of patients with RA. The characteristics of these cells are not completely known. In the work reported here, we generated these cells from peripheral-blood monocytes from healthy individuals. The monocytes were co-cultured with nurse-like cells from synovial tissues of patients with RA (RA-NLCs). Within 5 weeks of culture, the monocytes were activated and differentiated into mononuclear cells positive for CD14 and tartrate-resistant acid phosphatase (TRAP). These mononuclear cells then differentiated into multinucleated giant bone-resorbing cells after stimulation with IL-3, IL-5, IL-7, and/or granulocyte-macrophage-colony-stimulating factor. TRAP-positive cells with similar characteristics were found in synovial fluid from patients with RA. These results indicate that multinucleated giant bone-resorbing cells are generated from monocytes in two steps: first, RA-NLCs induce monocytes to differentiate into TRAP-positive mononuclear cells, which are then induced by cytokines to differentiate into multinucleated giant bone-resorbing cells.  相似文献   
106.
Fhod3 is a cardiac member of the formin family proteins that play pivotal roles in actin filament assembly in various cellular contexts. The targeted deletion of mouse Fhod3 gene leads to defects in cardiogenesis, particularly during myofibrillogenesis, followed by lethality at embryonic day (E) 11.5. However, it remains largely unknown how Fhod3 functions during myofibrillogenesis. In this study, to assess the mechanism whereby Fhod3 regulates myofibrillogenesis during embryonic cardiogenesis, we generated transgenic mice expressing Fhod3 selectively in embryonic cardiomyocytes under the control of the β-myosin heavy chain (MHC) promoter. Mice expressing wild-type Fhod3 in embryonic cardiomyocytes survive to adulthood and are fertile, whereas those expressing Fhod3 (I1127A) defective in binding to actin die by E11.5 with cardiac defects. This cardiac phenotype of the Fhod3 mutant embryos is almost identical to that observed in Fhod3 null embryos, suggesting that the actin-binding activity of Fhod3 is crucial for embryonic cardiogenesis. On the other hand, the β-MHC promoter-driven expression of wild-type Fhod3 sufficiently rescues cardiac defects of Fhod3-null embryos, indicating that the Fhod3 protein expressed in a transgenic manner can function properly to achieve myofibril maturation in embryonic cardiomyocytes. Using the transgenic mice, we further examined detailed localization of Fhod3 during myofibrillogenesis in situ and found that Fhod3 localizes to the specific central region of nascent sarcomeres prior to massive rearrangement of actin filaments and remains there throughout myofibrillogenesis. Taken together, the present findings suggest that, during embryonic cardiogenesis, Fhod3 functions as the essential reorganizer of actin filaments at the central region of maturating sarcomeres via the actin-binding activity of the FH2 domain.  相似文献   
107.
Abstract Most of the 16S ribosomal RNA gene of a sulfate-reducing magnetic bacterium, RS-1, was sequenced, and phylogenetic analysis was carried out. The results suggest that RS-1 is a member of the δ-Proteobacteria, and it appears to represent a new genus. RS-1 is the first bacterium reported outside the α-Proteobacteria that contains magnetite inclusions. RS-1 therefore disrupts the correlation between the α-Proteobacteria and possession of magnetite inclusions, and that between the δ-Proteobacteria and possession of greigite inclusions. The existence of RS-1 also suggests that intracellular magnetite biomineralization is of multiple evolutionary origins.  相似文献   
108.
Pseudomonas aeruginosa is capable of moving by swimming, swarming, and twitching motilities. In this study, we investigated the effects of fatty acids on Pseudomonas aeruginosa PAO1 motilities. A branched-chain fatty acid (BCFA)--12-methyltetradecanoic acid (anteiso-C15:0)--has slightly repressed flagella-driven swimming motility and completely inhibited a more complex type of surface motility, i.e. swarming, at a concentration of 10 microg mL(-1). In contrast, anteiso-C15:0 exhibited no effect on pili-mediated twitching motility. Other BCFAs and unsaturated fatty acids tested in this study showed similar inhibitory effects on swarming motility, although the level of inhibition differed between these fatty acids. These fatty acids caused no significant growth inhibition in liquid cultures. Straight-chain saturated fatty acids such as palmitic acid were less effective in swarming inhibition. The wetness of the PAO1 colony was significantly reduced by the addition of anteiso-C15:0; however, the production of rhamnolipids as a surface-active agent was not affected by the fatty acid. In addition to motility repression, anteiso-C15:0 caused 31% repression of biofilm formation by PAO1, suggesting that BCFA could affect the multiple cellular activities of Pseudomonas aeruginosa.  相似文献   
109.
This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin) was achieved in the field at a high-altitude (∼3623 m). This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.  相似文献   
110.
Chaperonin (Cpn) is one of the molecular chaperones. Cpn10 is a co-factor of Cpn60, which regulates Cpn60-mediated protein folding. It is known that Cpn10 is located in mitochondria and chloroplasts in plant cells. The Escherichia coli homologue of Cpn10 is called GroES. A cDNA for the Cpn10 homologue was isolated from Arabidopsis thaliana by functional complementation of the E. coli groES mutant. The cDNA was 647 bp long and encoded a polypeptide of 98 amino acids. The deduced amino acid sequence showed approximately 50% identity to mammalian mitochondrial Cpn10s and 30% identity to GroES. A Northern blot analysis revealed that the mRNA for the Cpn10 homologue was expressed uniformly in various organs and was markedly induced by heat-shock treatment. The Cpn10 homologue was constitutively expressed in transgenic tobaccos. Immunogold and immunoblot analyses following the subcellular fractionation of leaves from transgenic tobaccos revealed that the Cpn10 homologue was localized in mitochondria and accumulated at a high level in transgenic tobaccos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号