首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   133篇
  2208篇
  2023年   13篇
  2022年   9篇
  2021年   21篇
  2020年   10篇
  2019年   22篇
  2018年   27篇
  2017年   17篇
  2016年   41篇
  2015年   65篇
  2014年   76篇
  2013年   114篇
  2012年   116篇
  2011年   101篇
  2010年   69篇
  2009年   64篇
  2008年   109篇
  2007年   122篇
  2006年   126篇
  2005年   113篇
  2004年   97篇
  2003年   111篇
  2002年   84篇
  2001年   57篇
  2000年   60篇
  1999年   57篇
  1998年   23篇
  1997年   22篇
  1996年   20篇
  1995年   17篇
  1994年   14篇
  1993年   23篇
  1992年   40篇
  1991年   49篇
  1990年   26篇
  1989年   32篇
  1988年   26篇
  1987年   23篇
  1986年   27篇
  1985年   21篇
  1984年   19篇
  1983年   19篇
  1982年   11篇
  1981年   10篇
  1979年   6篇
  1978年   6篇
  1977年   14篇
  1976年   6篇
  1975年   10篇
  1974年   9篇
  1973年   6篇
排序方式: 共有2208条查询结果,搜索用时 15 毫秒
51.
It has been proposed that in autosomal recessive juvenile parkinsonism (AR-JP), a ubiquitin ligase (E3) Parkin, which is involved in endoplasmic reticulum-associated degradation (ERAD), lacks E3 activity. The resulting accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), a substrate of Parkin, leads to endoplasmic reticulum stress, causing neuronal death. We previously reported that human E3 HRD1 in the endoplasmic reticulum protects against endoplasmic reticulum stress-induced apoptosis. This study shows that HRD1 was expressed in substantia nigra pars compacta (SNC) dopaminergic neurons and interacted with Pael-R through the HRD1 proline-rich region, promoting the ubiquitylation and degradation of Pael-R. Furthermore, the disruption of endogenous HRD1 by small interfering RNA (siRNA) induced Pael-R accumulation and caspase-3 activation. We also found that ATF6 overexpression, which induced HRD1, accelerated and caused Pael-R degradation; the suppression of HRD1 expression by siRNA partially prevents this degradation. These results suggest that in addition to Parkin, HRD1 is also involved in the degradation of Pael-R.  相似文献   
52.
We have demonstrated that a unique megakaryocytic cell line UT‐7/TPO could respond to one of the primary platelet signals through GP (glycoprotein) VI and a secondary signal of the AA (arachidonic acid) cascade. Unlike other megakaryocytic cell lines, UT‐7/TPO was found to express GPVI and its associate signal molecule of FcRγ (Fc receptor γ chain). When UT‐7/TPO was stimulated with the GPVI agonist convulxin, the [Ca2+]i (intracellular Ca2+) was elevated in a convulxin concentration‐dependent manner, and [Ca2+]i elevation was blocked by pretreatment with the Src family kinase inhibitor PP2 and the phospholipase inhibitor U73122. These results strongly indicate that endogenously expressed GPVI signal molecules are functional in UT‐7/TPO. Concerning the AA cascade, the expression of COX (cyclooxygenase)‐1 and TX (thromboxane) synthase was observed, and this cell line was able to produce TX by exogenous AA, followed by [Ca2+]i elevation mediated through the TX receptor. It is worth noting that convulxin stimulation did not cause TX generation, even through the GPVI pathway and the AA cascade are functional in this cell line. As there are many reports that convulxin‐stimulated platelets failed to produce TX, it is suggested that UT‐7/TPO has the same property as the platelets in regards to convulxin stimulation. Thus, UT‐7/TPO is useful for the observation of both the GPVI pathway and AA cascade without requiring either the induction of differentiation or GPVI transfection. Furthermore, this cell line provides a new tool for research on platelet activation signals.  相似文献   
53.
Summary In this study bovine aortic endothelial cells were co-cultured with astrocytes from fetal Wistar Kyoto rats. Endothelial cells growing on type-I collagen, development. Although some cells appeared to be mature, horseradish peroxidase penetrated within 1 min of incubation through the intercellular junctions of these endothelial elements maintained on type-I collagen. In contrast, endothelial cells on type-IV collagen, co-cultured with astrocytes, were well developed; their intercellular junctions were well established, and plasmalemmal vesicles reduced in number. As a result, horseradish peroxidase was unable to penetrate through the endothelial cells grown on type-IV collagen and co-cultured with astrocytes because of the reduced extent of the junctional and vesicular transport. These findings reveal that (1) type-IV collagen is essential for the differentiation of endothelial cells, (2) endothelial cell-astrocyte interactions occur during co-culture, and (3) endothelial permeability depends on astrocyte-produced factors, in addition to type-IV collagen.  相似文献   
54.
Aims: To investigate whether intranasal Lactobacillus administration protects host animals from influenza virus (IFV) infection by enhancing respiratory immune responses in a mouse model. Methods and Results: After 3 days of intranasal exposure to Lactobacillus rhamnosus GG (LGG), BALB/c mice were infected with IFV A/PR/8/34 (H1N1). Mice treated with LGG showed a lower frequency of accumulated symptoms and a higher survival rate than control mice (P < 0·05). The YAC‐1 cell‐killing activity of lung cells isolated from mice treated with LGG was significantly greater than those isolated from control mice (P < 0·01). Intranasal administration of LGG significantly increased mRNA expression of interleukin (IL)‐1β, tumour necrosis factor (TNF) and monocyte chemotactic protein (MCP)‐1 (P < 0·01). Conclusions: These results suggest that intranasal administration of LGG protects the host animal from IFV infection by enhancing respiratory cell‐mediated immune responses following up‐regulation of lung natural killer (NK) cell activation. Significance and Impact of Study: We have demonstrated that probiotics might protect host animals from viral infection by stimulating immune responses in the respiratory tract.  相似文献   
55.
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.  相似文献   
56.
A mixture of two thionocarbamates was subjected to the acid-catalyzed rearrangement. A sample of the reaction mixture was analyzed by glpc and resolved into four components. From the cross-over result, it has been concluded that the acid-catalyzed rearrangement of alkyl thionocarbamates into the isomeric thiolcarbamates proceeds by an intermolecular alkylating mechanism. This conclusion was supported by the detection of a transalkylated intermediate.  相似文献   
57.
The ligand to receptor activator of NF-kappaB (RANK-L)/RANK interaction has been implicated in CD40 ligand/CD40-independent T cell priming by dendritic cells. In this report, we show that the coadministration of the RANK-L gene with a Trypanosoma cruzi gene markedly enhances the induction of Trypanosoma Ag-specific CD8(+) T cells and improves the DNA vaccine efficacy. A similarly potent adjuvant effect of the RANK-L gene on the induction of Ag-specific CD8(+) T cells was also observed when recombinant influenza virus expressing murine malaria Ag was used as an immunogen. In contrast, the coadministration of the CD40L gene was not effective in these systems. Our results demonstrated, for the first time, the potent immunostimulatory effect of the RANK-L gene to improve the CD8(+) T cell-mediated immunity against infectious agents.  相似文献   
58.
59.
Metabolic labeling has revealed that rat bone cell populations in culture synthesize several forms of the secreted phosphoprotein, SppI. Most cell populations produced two major [32PO4]-labeled forms that behaved anomolously on SDS-PAGE migrating at 60 kDa and 56 kDa on 10% gels and 55 kDa and 44 kDa on 15% gels. Minor forms of intermediate sizes were also resolved. In normal bone cells the 60 kDa form was predominant and was the only form produced by the clonal bone cell line, RCA 11, whereas the 56 kDa a form predominated in the transformed bone cell line, ROS 17/2.8. In all populations [35S]-methionine-labeling revealed SppIs at approximately 60 kDa but no 56 kDa form. Each form of SppI was specifically cleaved by thrombin which generated fragments of approximately 28 kDa. Transforming growth factor beta 1 increased SppI mRNA levels 3 to 6-fold within 24 h in the normal bone cells, but no increase occurred in the ROS 17/2.8 cells. The elevated expression of SppI was reflected in a selective increase in the synthesis of the [32PO4]-and [35S]-methionine-labeled 60 kDa SppIs.  相似文献   
60.
We used a particle-based Monte Carlo simulation to dissect the regulatory mechanism of molecular translocation of CaMKII, a key regulator of neuronal synaptic function. Geometry was based upon measurements from EM reconstructions of dendrites in CA1 hippocampal pyramidal neurons. Three types of simulations were performed to investigate the effects of geometry and other mechanisms that control CaMKII translocation in and out of dendritic spines. First, the diffusional escape rate of CaMKII from model spines of varied morphologies was examined. Second, a postsynaptic density (PSD) was added to study the impact of binding sites on this escape rate. Third, translocation of CaMKII from dendrites and trapping in spines was investigated using a simulated dendrite. Based on diffusion alone, a spine of average dimensions had the ability to retain CaMKII for duration of ~4 s. However, binding sites mimicking those in the PSD controlled the residence time of CaMKII in a highly nonlinear manner. In addition, we observed that F-actin at the spine head/neck junction had a significant impact on CaMKII trapping in dendritic spines. We discuss these results in the context of possible mechanisms that may explain the experimental results that have shown extended accumulation of CaMKII in dendritic spines during synaptic plasticity and LTP induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号