首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   617篇
  免费   53篇
  670篇
  2022年   5篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   30篇
  2014年   29篇
  2013年   39篇
  2012年   36篇
  2011年   59篇
  2010年   22篇
  2009年   25篇
  2008年   28篇
  2007年   33篇
  2006年   27篇
  2005年   23篇
  2004年   33篇
  2003年   36篇
  2002年   36篇
  2001年   19篇
  2000年   13篇
  1999年   13篇
  1998年   6篇
  1997年   10篇
  1996年   3篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1973年   5篇
  1971年   4篇
  1969年   3篇
  1967年   3篇
  1966年   4篇
排序方式: 共有670条查询结果,搜索用时 0 毫秒
41.
42.
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells.  相似文献   
43.
Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.  相似文献   
44.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   
45.
46.
TGR5 is a member of the G protein-coupled receptor family and is activated by bile acids (BAs). TGR5 is thought to be a promising drug target for metabolic diseases because the activation of TGR5 prevents obesity and hyperglycemia in mice fed a high-fat diet (HFD). In the present study, we identified a naturally occurring limonoid, nomilin, as an activator of TGR5. Unlike BAs, nomilin did not exhibit the farnesoid X receptor ligand activity. Although the nomilin derivative obacunone was capable of activating TGR5, limonin (the most abundant limonoid in citrus seeds) was not a TGR5 activator. When male C57BL/6J mice fed a HFD for 9 weeks were further fed a HFD either alone or supplemented with 0.2% w/w nomilin for 77 days, nomilin-treated mice had lower body weight, serum glucose, serum insulin, and enhanced glucose tolerance. Our results suggest a novel biological function of nomilin as an agent having anti-obesity and anti-hyperglycemic effects that are likely to be mediated through the activation of TGR5.  相似文献   
47.
Basic studies and applications on bioremediation of DDT: A review   总被引:2,自引:0,他引:2  
The persistent insecticide DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane) has been widely used for pest control in the management of mosquito-borne malaria and is still used for that purpose in some tropical countries. Considering the potential for negative effects due to DDT contamination, it is necessary to determine effective methods of remediation. Several methods have been used to degrade or transform DDT into less toxic compounds. Bacteria and white-rot fungi (WRF) have been shown to enhance the degradation process in soil using both pure and mixed cultures. Recently, a biological approach has been used as an environmentally-friendly treatment, using new biological sources to degrade DDT, e.g. brown-rot fungi (BRF), cattle manure compost (CMC) and spent mushroom waste (SMW). In this review, the abilities of BRF, CMC and SMW to degrade DDT are discussed, including the mechanisms and degradation pathways. Furthermore, application of these sources to contaminated soil is also described. The review discusses which is the best source for bioremediation of DDT.  相似文献   
48.
In this essay, we discuss new insights into the wide‐ranging impacts of mammalian transposable elements (TE) on gene expression and function. Nearly half of each mammalian genome is comprised of these mobile, repetitive elements. While most TEs are ancient relics, certain classes can move from one chromosomal location to another even now. Indeed, striking recent data show that extensive transposition occurs not only in the germline over evolutionary time, but also in developing somatic tissues and particular human cancers. While occasional germline TE insertions may contribute to genetic variation, many other, similar TEs appear to have little or no impact on neighboring genes. However, the effects of somatic insertions on gene expression and function remain almost completely unknown. We present a conceptual framework to understand how the ages, allele frequencies, molecular structures, and especially the genomic context of mammalian TEs each can influence their various possible functional consequences. Editor's suggested further reading in BioEssays Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica Abstract  相似文献   
49.
The hexadeoxynucleotide analog, L-d(CGCGCG) composed of L-deoxyribose was synthesized and clearly shown to have the same conformation and dynamic properties with natural D-d(CGCGCG) except for chirality with CD spectra. This unnatural hexanucleotide was not cleaved by bleomycin, an antitumor DNA cleaving drug, but was able to bind to the DNA binding domain of bleomycin to a similar extent with the natural one. These results strongly suggest the importance of the other moiety than the DNA binding domain for the specific DNA recognition of bleomycin. Thus, L-oligonucleotides are useful for the study of DNA-drug interactions.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号