首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1821篇
  免费   93篇
  国内免费   2篇
  1916篇
  2022年   8篇
  2021年   16篇
  2020年   10篇
  2019年   7篇
  2018年   21篇
  2017年   17篇
  2016年   24篇
  2015年   44篇
  2014年   46篇
  2013年   98篇
  2012年   112篇
  2011年   91篇
  2010年   56篇
  2009年   53篇
  2008年   114篇
  2007年   101篇
  2006年   102篇
  2005年   97篇
  2004年   89篇
  2003年   83篇
  2002年   101篇
  2001年   31篇
  2000年   46篇
  1999年   42篇
  1998年   30篇
  1997年   27篇
  1996年   18篇
  1995年   28篇
  1994年   18篇
  1993年   13篇
  1992年   38篇
  1991年   37篇
  1990年   24篇
  1989年   27篇
  1988年   24篇
  1987年   31篇
  1986年   25篇
  1985年   18篇
  1984年   23篇
  1983年   18篇
  1982年   25篇
  1981年   9篇
  1980年   5篇
  1979年   8篇
  1978年   8篇
  1977年   12篇
  1976年   4篇
  1975年   9篇
  1971年   4篇
  1969年   4篇
排序方式: 共有1916条查询结果,搜索用时 15 毫秒
81.
In a study of various phytopathogenic fungi, we found that fungithat belong to the genus Rhizoctonia produce IAA efficientlyfrom tryptophan. R. solani Kühn MAFF-305219, in particular,produced large amounts of tryptophol (Tol), which was assumedto be a specific by-product of the indole-3-pyruvate (IPy) pathway,in addition to IAA. Therefore, this fungus seemed suitable foranalysis of the function and the regulation of the biosynthesisof auxin by a fungal pathogen. Under normal aerobic conditions,the ratio of IAA to Tol synthesized by this strain was higherthan that under less aerobic conditions. In metabolic studieswith various indole derivatives, R. solani converted L-tryptophanand indole-3-acetaldehyde to IAA and Tol, but other indole derivativeswere scarcely metabolized. These results suggest that both IAAand Tol are synthesized from tryptophan through the IPy pathwayin Rhizoctonia. (Received May 27, 1996; Accepted July 8, 1996)  相似文献   
82.
Abstract The bradyzoite and tachyzoite forms of Toxoplasma gondii , purified from infected animals, were analysed for their activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, NAD+- and NADH-linked isocitrate dehydrogenases, and succinic dehydrogenase. Both developmental stages contained high activities of phosphofructokinase (specific for pyrophosphate rather than ATP), pyruvate kinase and lactate dehydrogenase, suggesting that energy metabolism in both forms may centre around a high glycolytic flux linked to lactate production. The markedly higher activity of the latter two enzymes in bradyzoites suggests that lactate production is particularly important in this developmental form. NAD+-specific isocitrate dehydrogenase was not detectable in either stage of the parasite (and proved useful as a measure of the purity of the bradyzoite preparation), whereas both parasite forms contained low activities of NADP+-linked isocitrate dehydrogenase. The results are consistent with the bradyzoites lacking a functional TCA cycle and respiratory chain and are suggestive of a lack of susceptibility of this developmental stage to atovaquone.  相似文献   
83.
Saxitoxin (STX) and its analogues accumulated in bivalves cause food poisoning through the blockade of sodium channels in the nervous system. In the current studies, STX-conjugated agarose gels as affinity chromatography reagents were prepared for investigation of the fate of the toxins in natural environments and in the human body. A carboxyl moiety was introduced through positions C11 and C13 to leave the most characteristic part of the molecule intact. Two types of synthesized derivatives, 11-(2-carboxyethylthio)saxitoxin and 13-O-hemisuccinyldecarbamoylsaxitoxin, were successfully conjugated to Sepharose 4B in high yield. Affinity gels containing 500 nmol of STX or decarbamoylsaxitoxin per milliliter of gel were accomplished by masking the residual amino groups by acetylation. Finally, the STX-conjugated affinity gel was effective for concentrating STX-binding proteins from pufferfish and bullfrog plasma.  相似文献   
84.
We isolated a methanogenic strain, designated as strain TMA (=DSM 9195), from an enrichment culture inoculated with a Japanese paddy field soil. Strain TMA was Gram positive and strictly anaerobic. Cell shape was pseudosarcina-like, and cells were nonmotile. The strain was able to use methylamines, methanol, H2–CO2, and acetate as substrates for methanogenesis, but did not utilize formate. The optimum temperature and optimum pH were 30–37°C and 6.5–7.5 respectively. The G+C content of the DNA was 42.1 mol %. Strain TMA had DNA-DNA hybridization values of more than 80% with Methanosarcina mazeii S-6T (T = type strain). On the basis of phenotypic and genotypic characteristics, we identified strain TMA as M. mazeii. This is the first methylotrophic methanogen isolated from a paddy field soil and identified to the species level.  相似文献   
85.
Myosin II phosphorylation-dependent cell motile events are regulated by myosin light-chain (MLC) kinase and MLC phosphatase (MLCP). Recent studies have revealed myosin phosphatase targeting subunit (MYPT1), a myosin-binding subunit of MLCP, plays a critical role in MLCP regulation. Here we report the new regulatory mechanism of MLCP via the interaction between 14-3-3 and MYPT1. The binding of 14-3-3beta to MYPT1 diminished the direct binding between MYPT1 and myosin II, and 14-3-3beta overexpression abolished MYPT1 localization at stress fiber. Furthermore, 14-3-3beta inhibited MLCP holoenzyme activity via the interaction with MYPT1. Consistently, 14-3-3beta overexpression increased myosin II phosphorylation in cells. We found that MYPT1 phosphorylation at Ser472 was critical for the binding to 14-3-3. Epidermal growth factor (EGF) stimulation increased both Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase inhibitor inhibited the EGF-induced Ser472 phosphorylation and the binding of MYPT1-14-3-3. Rho-kinase specific siRNA also decreased EGF-induced Ser472 phosphorylation correlated with the decrease in MLC phosphorylation. The present study revealed a new RhoA/Rho-kinase-dependent regulatory mechanism of myosin II phosphorylation by 14-3-3 that dissociates MLCP from myosin II and attenuates MLCP activity.  相似文献   
86.
Objective: To further address the function of the Y5 receptor in energy homeostasis, we investigated the effects of a novel spironolactone Y5 antagonist in diet-induced obese (DIO) mice. Methods and Procedures: Male C57BL/6 or Npy5r−/− mice were adapted to high-fat (HF) diet for 6–10 months and were submitted to three experimental treatments. First, the Y5 antagonist at a dose of 10 or 30 mg/kg was administered for 1 month to DIO C57BL/6 or Npy5r−/− mice. Second, the Y5 antagonist at 30 mg/kg was administered for 1.5 months to DIO C57BL/6 mice, and insulin sensitivity was evaluated using an insulin tolerance test. After a recovery period, nuclear magnetic resonance measurement was performed to evaluate body composition. Third, DIO mice were treated with the Y5 antagonist alone, or in combination with 10% food restriction, or with another anorectic agent, sibutramine at 10 mg/kg, for 1.5 months. Plasma glucose, insulin, and leptin levels, and adipose tissue weights were quantified. Results: The spironolactone Y5 antagonist significantly reduced body weight in C57BL DIO mice, but not in Npy5r−/− DIO mice. The Y5 antagonist produced a fat-selective loss of body weight, and ameliorated obesity-associated insulin resistance in DIO mice. In addition, the Y5 antagonist combined with either food restriction or sibutramine tended to produce greater body weight loss, as compared with single treatment. Discussion: These findings demonstrate that the Y5 receptor is an important mediator of energy homeostasis in rodents.  相似文献   
87.
Recent investigations into the mechanisms mediating itch transmission have focused on spinal mechanisms, whereas few studies have investigated the role of the cerebral cortex in itch‐related behaviors. Human imaging studies show that several cortical regions are active in correspondence with itch, including the anterior cingulate cortex (ACC). We present here evidence of cortical modulation of pruritogen‐induced scratching behavior. We combine pharmacological, genetic, and electrophysiological approaches to show that cortical GluK1‐containing kainate (KA) receptors are involved in scratching induced by histamine and non‐histamine‐dependent itching stimuli. We further show that scratching corresponds with enhanced excitatory transmission in the ACC through KA receptor modulation of inhibitory circuitry. In addition, we found that inhibiting GluK1‐containing KA receptors in the ACC also reduced behavioral nociceptive responses induced by formalin. Our results reveal a new role of the cortex in pruritogen‐induced scratching.

  相似文献   

88.
The effects of solute and hydrochloric acid concentrations on optical rotation were studied using 20 naturally occuring amino acids.

There appeared to be no common factor among the amino acids as far as the inclination of optical rotation was concerned. Lutz-Jirgenson’s rule could be applied to few amino acids in the cationic form. Therefore, in the determination of the optical rotation, the concentration of the solute, nature of solvent and temperature must be rigorously controlled. The optical conditions of measurement and the specific rotation of 20 amino acids were recommended based on this work.  相似文献   
89.
To determine the role of repair of potentially lethal damage (PLD) in the initiation process of neoplastic transformation, Balb/c 3T3 cells treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were temporarily exposed to conditioned medium obtained from density-inhibited Chinese hamster cell cultures, as a post-treatment for the induction of PLD repair. With or without this exposure, cell survival and transformation frequencies were simultaneously determined by colony-formation and focus-formation assays, respectively. Temporary exposure to conditioned medium resulted in a 20-30% increase in cell survival compared with no exposure. Post-treatment with conditioned medium resulted in a 60-65% reduction in transformation frequencies. At the molecular level, the repair of MNNG-induced single-strand breaks of DNA occurred much more rapidly in conditioned medium. These data suggest that PLD repair reduces the in vitro neoplastic transformation through excision repair operative during the cessation of DNA replication. Thus, PLD repair appears to be preventive against neoplastic fixation in initiation of neoplastic development.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号