首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2466篇
  免费   167篇
  国内免费   1篇
  2634篇
  2023年   10篇
  2022年   38篇
  2021年   46篇
  2020年   25篇
  2019年   41篇
  2018年   43篇
  2017年   48篇
  2016年   62篇
  2015年   110篇
  2014年   141篇
  2013年   151篇
  2012年   225篇
  2011年   195篇
  2010年   140篇
  2009年   103篇
  2008年   149篇
  2007年   117篇
  2006年   134篇
  2005年   138篇
  2004年   121篇
  2003年   106篇
  2002年   78篇
  2001年   56篇
  2000年   79篇
  1999年   47篇
  1998年   21篇
  1997年   13篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   18篇
  1992年   20篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   10篇
  1982年   10篇
  1981年   3篇
  1980年   8篇
  1979年   12篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2634条查询结果,搜索用时 15 毫秒
81.
82.
G protein-coupled and tyrosine kinase receptor activation of phospholipase D1 (PLD1) play key roles in agonist-stimulated cellular responses such as regulated exocytosis, actin stress fiber formation, and alterations in cell morphology and motility. Protein Kinase C, ADP-ribosylation factor (ARF), and Rho family members activate PLD1 in vitro; however, the actions of the stimulators on PLD1 in vivo have been proposed to take place through indirect pathways. We have used the yeast split-hybrid system to generate PLD1 alleles that fail to bind to or to be activated by RhoA but that retain wild-type responses to ARF and PKC. These alleles then were employed in combination with alleles unresponsive to PKC or to both stimulators to examine the activation of PLD1 by G protein-coupled receptors. Our results demonstrate that direct stimulation of PLD1 in vivo by RhoA (and by PKC) is critical for significant PLD1 activation but that PLD1 subcellular localization and regulated phosphorylation occur independently of these stimulatory pathways.  相似文献   
83.
5-Bromouracil (BrU) was incorporated into three types of synthetic RNA and the products of the photoirradiated BrU-containing RNAs were investigated using HPLC and MS analysis. The photoirradiation of r(GCABrUGC)2 and r(CGAABrUUGC)/r(GCAAUUCG) in A-form RNA produced the corresponding 2′-keto adenosine (ketoA) product at the 5′-neighboring nucleotide, such as r(GCketoAUGC) and r(CGAketoAUUGC), respectively. The photoirradiation of r(CGCGBrUGCG)/r(CmGCACmGCG) in Z-form RNA produced the 2′-keto guanosine (ketoG) product r(CGCketoGUGCG), whereas almost no products were observed from the photoirradiation of r(CGCGBrUGCG)/r(CmGCACmGCG) in A-form RNA. The present results indicate clearly that hydrogen (H) abstraction by the photochemically generated uracil-5-yl radical selectively occurs at the C2′ position to provide a 2′-keto RNA product.  相似文献   
84.
Actin directly interacts with phospholipase D, inhibiting its activity   总被引:8,自引:0,他引:8  
Mammalian phospholipase D (PLD) plays a key role in several signal transduction pathways and is involved in many diverse functions. To elucidate the complex molecular regulation of PLD, we investigated PLD-binding proteins obtained from rat brain extract. Here we report that a 43-kDa protein in the rat brain, beta-actin, acts as a major PLD2 direct-binding protein as revealed by peptide mass fingerprinting in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. We also determined that the region between amino acids 613 and 723 of PLD2 is required for the direct binding of beta-actin, using bacterially expressed glutathione S-transferase fusion proteins of PLD2 fragments. Intriguingly, purified beta-actin potently inhibited both phosphatidylinositol-4,5-bisphosphate- and oleate-dependent PLD2 activities in a concentration-dependent manner (IC50 = 5 nm). In a previous paper, we reported that alpha-actinin inhibited PLD2 activity in an interaction-dependent and an ADP-ribosylation factor 1 (ARF1)-reversible manner (Park, J. B., Kim, J. H., Kim, Y., Ha, S. H., Kim, J. H., Yoo, J.-S., Du, G., Frohman, M. A., Suh, P.-G., and Ryu, S. H. (2000) J. Biol. Chem. 275, 21295-21301). In vitro binding analyses showed that beta-actin could displace alpha-actinin binding to PLD2, demonstrating independent interaction between cytoskeletal proteins and PLD2. Furthermore, ARF1 could steer the PLD2 activity in a positive direction regardless of the inhibitory effect of beta-actin on PLD2. We also observed that beta-actin regulates PLD1 and PLD2 with similar binding and inhibitory potencies. Immunocytochemical and co-immunoprecipitation studies demonstrated the in vivo interaction between the two PLD isozymes and actin in cells. Taken together, these results suggest that the regulation of PLD by cytoskeletal proteins, beta-actin and alpha-actinin, and ARF1 may play an important role in cytoskeleton-related PLD functions.  相似文献   
85.
Ectodomain shedding is an important mechanism to regulate the biological activities of membrane proteins. We focus here on the signaling mechanism of the ectodomain shedding of heparin-binding epidermal growth factor (EGF)-like growth factor (pro HB-EGF). Lysophosphatidic acid (LPA), a ligand for seven-transmembrane G protein-coupled receptors, stimulates the shedding of pro HB-EGF, which constitutes a G protein-coupled receptor-mediated transactivation of the EGF receptor. Experiments using a series of inhibitors and overexpression of mutant forms of signaling molecules revealed that the Ras-Raf-MEK signal is essential for the LPA-induced shedding. In addition, the small GTPase Rac is involved in the LPA-induced shedding, possibly to promote MEK activation. 12-O-Tetradecanoylphorbol-13-acetate is another potent inducer of pro HB-EGF shedding. We also demonstrate that the LPA-induced pathway is distinct from the 12-O-tetradecanoylphorbol-13-acetate-induced pathway and that these pathways constitute a dual signaling cascade that regulates the shedding of pro HB-EGF.  相似文献   
86.
87.

Background

Early diagnosis of pulmonary hypertension (PH) in idiopathic pulmonary fibrosis (IPF) has potential prognostic and therapeutic implications but can be difficult due to the lack of specific clinical manifestations or accurate non-invasive tests. Histopathologic parameters correlating with PH in IPF are also not known. Remodeling of postcapillary pulmonary vessels has been reported in the nonfibrotic areas of explanted lungs from IPF patients. We hypothesized that iron deposition and increased alveolar capillaries, the findings often seen in postcapillary PH, might predict the presence of clinical PH, independent of the severity of fibrosis or ventilatory dysfunction in IPF patients. To test this hypothesis, we examined the association between these histologic parameters and the degree of PH, with consideration of the severity of disease in IPF.

Methods

Iron deposition and alveolar septal capillary density (ASCD) were evaluated on histologic sections with hematoxylin-eosin, iron, elastin and CD34 stainings. Percentage of predicted forced vital capacity (FVC%) was used for grading pulmonary function status. Fibrosis score assessed on high resolution computed tomography (HRCT) was used for evaluating overall degree of fibrosis in whole lungs. Right ventricular systolic pressure (RVSP) by transthoracic echocardiography was used for the estimation of PH. Univariate and multivariate regression analyses were performed.

Results

A cohort of 154 patients was studied who had the clinicopathological diagnosis of IPF with surgical lung biopsies or explants during the period of 1997 to 2006 at Mayo Clinic Rochester. In univariate analysis, RVSP in our IPF cases was associated with both iron deposition and ASCD (p < 0.001). In multivariate analysis with FVC% and HRCT fibrosis score included, iron deposition (p = 0.02), but not ASCD (p = 0.076), maintained statistically significant association with RVSP. FVC% was associated with RVSP on univariate analysis but not on multivariate analysis, while fibrosis score lacked any association with RVSP by either univariate or multivariate analyses.

Conclusions

Iron deposition and ASCD in non fibrotic lung tissue showed an association with RVSP, suggesting that these features are possible morphologic predictors of PH in IPF.  相似文献   
88.
Two different H2-based, denitrifying membrane-biofilm reactors (MBfRs) initially reduced Se(VI) or Cr(VI) stably to Se0 or Cr(III). When the oxidized contaminants in the influent were switched, each new oxidized contaminant was reduced immediately, and its reduction soon was approximately the same or greater than it had been in its original MBfR. The precipitation of reduced selenium and chromium in the biofilm was verified by scanning electron microscopy and energy dispersive X-ray analysis. These results on selenate and chromate reduction are consistent with the interpretation that the H2-based biofilm community had a high level of functional diversity. The communities’ structures were assessed by cloning analysis. Dechloromonas spp., a known perchlorate-reducing bacteria, dominated the clones from both reactors during selenate and chromate reductions, which suggests that it may have functional diversity capable of reducing selenate and chromate as secondary and dissimilatory acceptors.  相似文献   
89.
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells.  相似文献   
90.
The kallikrein-kinin system (KKS) serves as the physiologic counterbalance to the renin-angiotensin system. This study was conducted to examine the changes in the expression of KKS components in podocytes under diabetic conditions and to elucidate the functional role of bradykinin (BK) in diabetes-associated podocyte apoptosis. Thirty-two rats were injected with either diluent (n = 16, C) or with streptozotocin intraperitoneally (n = 16, DM), and 8 rats from each group were treated with BK infusion for 6 weeks. Immortalized mouse podocytes were cultured in media containing 5.6 mmol/l glucose (NG), NG + 10(-7) mol/l AII (AII), or 30 mmol/l glucose (HG) with or without 10(-8) mol/l BK. Urinary albumin excretion was significantly higher in DM rats, and this increase was ameliorated by BK. Not only kininogen, kallikrein, and BK B1- and B2-receptor expression but also BK levels were significantly decreased in DM glomeruli and in cultured podocytes exposed to HG. The changes in the expressions of apoptosis-related molecules and the increase in the number of apoptotic cells in DM glomeruli as well as in HG- and AII-stimulated podocytes were significantly abrogated by BK. The suppressed KSS within podocytes under diabetic condition was associated with podocyte apoptosis, suggesting that BK may be beneficial in preventing podocyte loss in diabetic nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号