首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2513篇
  免费   172篇
  国内免费   1篇
  2686篇
  2023年   10篇
  2022年   41篇
  2021年   53篇
  2020年   26篇
  2019年   41篇
  2018年   45篇
  2017年   50篇
  2016年   63篇
  2015年   112篇
  2014年   143篇
  2013年   153篇
  2012年   228篇
  2011年   198篇
  2010年   138篇
  2009年   107篇
  2008年   149篇
  2007年   118篇
  2006年   133篇
  2005年   138篇
  2004年   122篇
  2003年   106篇
  2002年   79篇
  2001年   58篇
  2000年   81篇
  1999年   45篇
  1998年   30篇
  1997年   15篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   17篇
  1992年   19篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   12篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1982年   12篇
  1981年   3篇
  1980年   9篇
  1979年   12篇
  1978年   3篇
  1977年   6篇
  1972年   2篇
  1971年   3篇
  1969年   2篇
排序方式: 共有2686条查询结果,搜索用时 15 毫秒
91.
The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.  相似文献   
92.
Calcineurin is a calcium-activated phosphatase to mediate lymphocyte activation and neuron signaling, but its role in inflammatory arthritis remains largely unknown. In this study, we demonstrate that calcineurin was highly expressed in the lining layer, infiltrating leukocytes, and endothelial cells of rheumatoid synovium. The basal expression levels of calcineurin were higher in the cultured synoviocytes of rheumatoid arthritis patients than those of osteoarthritis patients. The calcineurin activity in the synoviocytes was increased by the stimulation with proinflammatory cytokines such as IL-1beta and TNF-alpha. Moreover, rheumatoid arthritis synoviocytes had an enlarged intracellular Ca(2+) store and showed a higher degree of [Ca(2+)](i) release for calcineurin activity than osteoarthritis synoviocytes when stimulated with either TNF-alpha or phorbol myristate acetate. IL-10, an anti-inflammatory cytokine, failed to increase the Ca(2+) and calcineurin activity. The targeted inhibition of calcineurin by the overexpression of calcineurin-binding protein 1, a natural calcineurin antagonist, inhibited the production of IL-6 and matrix metalloproteinase-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Moreover, the abundant calcineurin expression was found in the invading pannus in the joints of mice with collagen-induced arthritis. In these mice, calcineurin activity in the cultured synovial and lymph node cells correlated well with the severity of arthritis, but which was suppressed by cyclosporin A treatment. Taken together, our data suggest that the abnormal activation of Ca(2+) and calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis and thus provide a potential target for controlling inflammatory arthritis.  相似文献   
93.
Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation.Stem cells in the body are exposed to low oxygen pressure owing to the physiological distribution of vessels.1 This hypoxic niche for stem cells is essential to maintain the metabolic characteristics of stem cells.2 Thus, describing the oxygen nature of this stem cell niche is important for elucidating stem cell regulation. Oxygen signaling is a major determinant of cell fate-controlling cellular processes. Control of oxygen signaling in stem cells has the potential to regulate embryonic development, cell cultivation, cell reprogramming, and transplantation in regenerative medicine.1, 3, 4, 5, 6 There are many reports showing the effects of hypoxia on various kinds of stem cells, and it has been shown that hypoxia has a paradoxical role in stem cell behaviors and cell fate regulation related to stem cell type, ageing, and oxygen concentration.3, 7, 8, 9 Studies of mechanisms by which stem cells function under hypoxia, and how they are regulated, have been undertaken. Several investigators recently reported that hypoxia-mediated stem cell metabolic alteration is associated with stem cell function; as a result, interest in the interaction between hypoxia and stem cell metabolism is growing.10, 11 However, which metabolic factors are important for stem cell fate under hypoxia have not been elucidated.O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is affected by cellular nutrient status and extra-cellular stresses including hypoxia.12, 13, 14 A hypoxia-induced glycolytic switch primarily stimulates hexosamine biosynthetic pathway (HBP) flux, which induces O-GlcNAcylation signaling.15 O-GlcNAcylation is catalyzed by O-linked N-acetyl glucosamine transferase (OGT) to add N-acetyl glucosamine to the serine or threonine residues of proteins.16, 17, 18 O-GlcNAcylation acts as an essential factor for controlling physiological processes including migration, proliferation, and survival in stem cells, and recently it was considered as a potential strategy for use in stem cell therapy.19, 20, 21 In addition, as many human metabolic diseases such as diabetes and cancer are attributed to aberrant O-GlcNAcylation, unraveling HBP-mediated O-GlcNAc signaling is important in the development of practical strategies for metabolic diseases treatment. For example, Liu et al.22 showed that glucosamine-mediated O-GlcNAcylation induced resistance to tissue damage resulting from ischemic injury and provided cardio-protection in an animal model. Furthermore, O-GlcNAcylation interacts with other nutrient metabolic pathways such as lipogenesis, gluconeogenesis, and glycogen synthesis.12, 23, 24 Among these metabolic pathways, lipid metabolism is reported to have a central role in controlling stem cell fate.25, 26 Collectively, these results suggest that O-GlcNAcylation can be a useful tool for use in cellular metabolic regulation, and identification of an O-GlcNAcylation-regulating potential lipid metabolic factor, which is important for stem cell regulation, may suggest potentially useful metabolic approach in stem cell therapy.Embryonic stem cells (ESCs) are distinctive in that they have a self-renewal capacity, exhibit pluripotency to enable differentiation into cellular derivatives of three lineages, and may be used as a representative in vitro model in the study of early embryo development, pluripotent stem cell physiology, and clinical applications.27, 28, 29 Despite the clinical limitation associated with ESCs and the possibility of cancer formation, several studies into the therapeutic effects of ESCs in regenerative medicine have been reported. Indeed, administrations of human or mouse ESCs (mESCs) has induced a paracrine effect and improved damaged cell functions.30, 31, 32 However, despite the benefit of ESCs in regenerative medicine, ESC apoptosis remains an impediment to ESC applications using hypoxia.33, 34, 35 Thus, researchers are investigating ways to minimize ESC apoptosis and control ESC fate under hypoxia. In this study, we used glucosamine to induce O-GlcNAcylation. Therefore, our study investigated the role of O-GlcNAcylation via glucosamine (GlcN) which is recognized as a HBP activator36 in lipid metabolism and in protection of mESC apoptosis under hypoxia.  相似文献   
94.
We have determined the full sequence of the ribosomal DNA intergenic spacer (IGS) of the swimming crab, Charybdis japonica, by long PCR for the first time in crustacean decapods. The IGS is 5376 bp long and contains two nonrepetitive regions separated by one long repetitive region, which is composed mainly of four subrepeats (subrepeats I, II, III, and IV). Subrepeat I contains nine copies of a 60-bp repeat unit, in which two similar repeat types (60 bp-a and 60 bp-b) occur alternatively. Subrepeat II consists of nine successive repeat units with a consensus sequence length of 142 bp. Subrepeat III consists of seven copies of another 60-bp repeat unit (60 bp-c) whose sequence is complementary to that of subrepeat I. Immediately downstream of subrepeat III is subrepeat IV, consisting of three copies of a 391-bp repeat unit. Based on comparative analysis among the subrepeats and repeat units, a possible evolutionary process responsible for the formation of the repetitive region is inferred, which involves the duplication of a 60-bp subrepeat unit (60 bp-c) as a prototype. Received: 13 April 1999 / Accepted: 2 August 1999  相似文献   
95.
A fundamental question that applies to all organisms is how barrier epithelia efficiently manage continuous contact with microorganisms. Here, we show that in Drosophila an extracellular immune-regulated catalase (IRC) mediates a key host defense system that is needed during host-microbe interaction in the gastrointestinal tract. Strikingly, adult flies with severely reduced IRC expression show high mortality rates even after simple ingestion of microbe-contaminated foods. However, despite the central role that the NF-kappaB pathway plays in eliciting antimicrobial responses, NF-kappaB pathway mutant flies are totally resistant to such infections. These results imply that homeostasis of redox balance by IRC is one of the most critical factors affecting host survival during continuous host-microbe interaction in the gastrointestinal tract.  相似文献   
96.
Sphingosylphosphorylcholine (SPC) is a bioactive lipid molecule involved in numerous biological processes. Treatment of MS1 pancreatic islet endothelial cells with SPC increased phospholipase D (PLD) activity in a time- and dose-dependent manner. In addition, treatment of the MS1 cells with 10 microM SPC induced stimulation of phospholipase C (PLC) activity and transient elevation of intracellular Ca2+. The SPC-induced PLD activation was prevented by pretreatment of the MS1 cells with a PLC inhibitor, U73122, and an intracellular Ca2+-chelating agent, BAPTA-AM. This suggests that PLC-dependent elevation of intracellular Ca2+ is involved in the SPC-induced activation of PLD. The SPC-dependent PLD activity was also almost completely prevented by pretreatment with pan-specific PKC inhibitors, GF109203X and RO-31-8220, and with a PKCdelta-specific inhibitor, rottlerin, but not by pretreatment with GO6976, a conventional PKC isozymes-specific inhibitor. Adenoviral overexpression of a kinase-deficient mutant of PKCdelta attenuated the SPC-induced PLD activity. These results suggest that PKCdelta plays a crucial role for the SPC-induced PLD activation. The SPC-induced PLD activation was preferentially potentiated in COS-7 cells transfected with PLD2 but not with PLD1, suggesting a specific implication of PLD2 in the SPC-induced PLD activation. SPC treatment induced phosphorylation of PLD2 in COS-7 cells, and overexpression of the kinase-deficient mutant of PKCdelta prevented the SPC-induced phosphorylation of PLD2. Furthermore, SPC treatment generated reactive oxygen species (ROS) in MS1 cells and the SPC induced production of ROS was inhibited by pretreatment with U73122, BAPTA-AM, and rottlerin. In addition, pretreatment with a PLD inhibitor 1-butanol and overexpression of a lipase-inactive mutant of PLD2 but not PLD1 attenuated the SPC-induced generation of ROS. These results suggest that PLC-, Ca2+-, PKCdelta-, and PLD2-dependent pathways are essentially required for the SPC induced ROS generation.  相似文献   
97.
Kim JH  Rhee HI  Jung IH  Ryu K  Jung K  Han CK  Kwak WJ  Cho YB  Joo HJ 《Life sciences》2005,77(11):1181-1193
SKI306X compound is a herbal mixture. This plant was in oriental medicine and was clinically approved for the treatment of osteoarthritis (OA) in Korea. SKI306X was previously found to have anti-inflammatory, analgesic and cartilage protective effects in several experimental models. In this study, SKI306X was investigated for its gastro-sparing effects on the gastric mucosa comparing with those of diclofenac, a conventional NSAID, and celecoxib, a cyclooxygenase-2 (COX-2) specific inhibitor. To investigate acute gastric damaging properties of SKI306X, the stomach of the animals was histologically and immuno-histochemically examined after single or repeated administration, and SKI306X demonstrated excellent gastric tolerability. SKI306X did not cause significant gastric irritation, erosion, or ulceration up to the orally administered dose of 2 g/kg and the intraperitoneal (i.p.) dose of 125 mg/kg. In contrast, diclofenac caused mucosal erosion, ulceration and bleeding at clinically effective doses. To determine the mode of gastro-sparing action, eicosanoid synthesis was examined in gastric mucosa and blood. SKI306X significantly decreased gastric and blood leukotriene B(4) (LTB(4)) production. However, SKI306X showed either no effect or a slight increase in levels of prostaglandin E(2) (PGE(2)). In addition, gastro-protective effects of SKI306X were exhibited by suppressing diclofenac-induced erosion and ulceration of gastric mucosa in a rat model and the possible mechanism of these effects were investigated. These studies demonstrated that SKI306X did not produce any significant damage up to dose of 2 g/kg and was effective in significantly protecting the damage associated to diclofenac-induced gastric ulcerations. SKI306X could spare the gastric mucosa through significantly suppressing gastric leukotriene (LT) synthesis.  相似文献   
98.
99.
100.
High cell density fed-batch fermentation of Alcaligenes eutrophus was carried out for the production of poly(3-hydroxybutyrate) (PHB) in a 60-L fermentor. During the fermentation, pH was controlled with NH(4)OH solution and PHB accumulation was induced by phosphate limitation instead of nitrogen limitation. The glucose feeding was controlled by monitoring dissolved oxygen (DO) concentration and glucose concentration in the culture broth. The glucose concentration fluctuated within the range of 0-20 g/L. We have investigated the effect of initial phosphate concentration on the PHB production when the initial volume was fixed. Using an initial phosphate concentration of 5.5 g/L, the fed-batch fermentation resulted in a final cell concentration of 281 g/L, a PHB concentration of 232 g/L, and a PHB productivity of 3.14 g/L . h, which are the highest values ever reported to date. In this case, PHB content, cell yield from glucose, and PHB yield from glucose were 80, 0.46, and 0.38% (w/w), respectively. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 28-32, 1997.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号