首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   32篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   6篇
  2018年   18篇
  2017年   12篇
  2016年   25篇
  2015年   25篇
  2014年   33篇
  2013年   54篇
  2012年   38篇
  2011年   70篇
  2010年   36篇
  2009年   31篇
  2008年   42篇
  2007年   54篇
  2006年   55篇
  2005年   49篇
  2004年   41篇
  2003年   45篇
  2002年   42篇
  2001年   9篇
  2000年   17篇
  1999年   13篇
  1998年   4篇
  1996年   5篇
  1995年   7篇
  1994年   4篇
  1993年   10篇
  1992年   8篇
  1991年   14篇
  1990年   5篇
  1988年   3篇
  1986年   3篇
  1985年   4篇
  1983年   5篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1970年   6篇
  1969年   4篇
  1968年   3篇
排序方式: 共有869条查询结果,搜索用时 15 毫秒
21.
Radical shifts to new natural and human made niches can make some functions unneeded and thus exposed to genetic degeneration. Here we ask not about highly specialized and rarely used functions but those relating to major life‐history traits, rate of growth, and resistance to prolonged starvation. We found that in yeast each of the two traits was visibly impaired by at least several hundred individual gene deletions. There were relatively few deletions affecting negatively both traits and likely none harming one but improving the other. Functional profiles of gene deletions affecting either growth or survival were strikingly different: the first related chiefly to synthesis of macromolecules whereas the second to maintenance and recycling of cellular structures. The observed pattern of gene indispensability corresponds to that of gene induction, providing a rather rare example of agreement between the results of deletion and expression studies. We conclude that transitions to new environments in which the ability to grow at possibly fastest rate or survive under very long starvation become practically unnecessary can result in rapid erosion of these vital functions because they are coded by many genes constituting large mutational targets and because restricted pleiotropy is unlikely to constrain this process.  相似文献   
22.
23.
24.
25.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   

26.
In man, the two major metabolites of the antimalarial drug chloroquine (CQ) are monodesethylchloroquine (DECQ) and didesethylchloroquine (di-DECQ). By analogy with CQ, the synthesis and the in vitro tests of some amino derivatives of ferrochloroquine (FQ), a ferrocenic analogue of CQ which are presumed to be the oxidative metabolites of FQ, are reported. Desmethylferrochloroquine 1a and didesmethylferrochloroquine 2 would be more potent against schizontocides than CQ in vitro against two strains (HB3 and Dd2) of Plasmodium falciparum. Other secondary amino derivatives have been prepared and proved to be active as antimalarial agents in vitro, too.  相似文献   
27.
28.
Right-handed RNA duplexes of (CG)n sequence undergo salt-induced helicity reversal, forming left-handed RNA double helices (Z-RNA). In contrast to the thoroughly studied Z-DNA, no Z-RNA structure of natural origin is known. Here we report the NMR structure of a half-turn, left-handed RNA helix (CGCGCG)2 determined in 6 M NaClO4. This is the first nucleic acid motif determined at such high salt. Sequential assignments of non-exchangeable proton resonances of the Z-form were based on the hitherto unreported NOE connectivity path [H6(n)-H5′/H5″(n)-H8(n+1)-H1′(n+1)-H6(n+2)] found for left-handed helices. Z-RNA structure shows several conformational features significantly different from Z-DNA. Intra-strand but no inter-strand base stacking was observed for both CpG and GpC steps. Helical twist angles for CpG steps have small positive values (4–7°), whereas GpC steps have large negative values (−61°). In the full-turn model of Z-RNA (12.4 bp per turn), base pairs are much closer to the helix axis than in Z-DNA, thus both the very deep, narrow minor groove with buried cytidine 2′-OH groups, and the major groove are well defined. The 2′-OH group of cytidines plays a crucial role in the Z-RNA structure and its formation; 2′-O-methylation of cytidine, but not of guanosine residues prohibits A to Z helicity reversal.  相似文献   
29.
30.
Spermatozoa of sturgeons (Acipenseriformes), unlike teleosts, possess an acrosome. This paper provides data concerning biochemical characteristics of arylsulfatase (AS), an acrosomal enzyme, found in Russian sturgeon spermatozoa and seminal plasma. The enzymes were purified by a four-step procedure, using n-butanol extraction, ion-exchange chromatography repeated twice and gel filtration. High purity of our enzymes was confirmed by silver staining electrophoresis and an immunological experiment. Kinetic parameters indicated that the purified enzymes belong to arylsulfatase type A. Similarity of the seminal plasma arylsulfatase to the spermatozoan enzyme showed us that arylsulfatase from seminal plasma might originate from damaged spermatozoa. The possible physiological consequences of the presence of arylsulfatase in Russian sturgeon semen are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号